【題目】某商場將進貨價為40元的臺燈以50元的銷售價售出,平均每月能售出800個.市場調(diào)研表明:當銷售價每上漲1元時,其銷售量就將減少10個.若設每個臺燈的銷售價上漲元.
(1)試用含的代數(shù)式填空:
①漲價后,每個臺燈的銷售價為 元;
②漲價后,商場的臺燈平均每月的銷售量為 臺;
③漲價后,商場每月銷售臺燈所獲得總利潤為 元.
(2)如果商場要想銷售總利潤平均每月達到20000元,商場經(jīng)理甲說“在原售價每臺50元的基礎上再上漲40元,可以完成任務”,商場經(jīng)理乙說“不用漲那么多,在原售價每臺50元的基礎上再上漲30元就可以了”,試判斷經(jīng)理甲與乙的說法是否正確,并說明理由.
【答案】(1)①;②;③;(2)甲、乙經(jīng)理說法都正確.
【解析】試題分析:(1)根據(jù)進價和售價以及每上漲1元時,其銷售量就將減少10個之間的關系,列出代數(shù)式即可;
(2)根據(jù)平均每月能售出600個和銷售價每上漲1元時,其銷售量就將減少10個之間的關系列出式子,再分兩種情況討論,求出每月的銷售利潤,再進行比較即可.
解:(1)①漲價后,每個臺燈的銷售價為40+a(元);
②漲價后,每個臺燈的利潤為40+a﹣30=10+a(元);
③漲價后,商場的臺燈平均每月的銷售量為(600﹣10a)臺;
故答案為:40+a,10+a,600﹣10a.
(2)甲與乙的說法均正確,理由如下:
依題意可得該商場臺燈的月銷售利潤為:(600﹣10a)(10+a);
當a=40時,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);
當a=10時,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);
故經(jīng)理甲與乙的說法均正確.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p、q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=,例如12可以分解成1×12,2×6,或3×4,因為12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)求F(24)和F(48);
(2)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,用字母表示為 ;這時我們稱正整數(shù)a是完全平方數(shù).若m是一個完全平方數(shù),求F(m)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司欲招收職員一名,從學歷、經(jīng)驗和工作態(tài)度等三個方面對甲乙丙進行了初步測試,測試成績?nèi)缦卤恚?/span>
(1)如果將學歷、經(jīng)驗和工作態(tài)度三項得分按的比例確定各人的最終得分,并以此為據(jù)確定錄用者,那么誰將被錄用?
(2)自己確定學歷、經(jīng)驗和工作態(tài)度三項的權,并根據(jù)自己的方案確定錄用者.
應聘者 | 甲 | 乙 | 丙 |
項目 | |||
學歷 | |||
經(jīng)驗 | |||
工作態(tài)度 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補全示意圖,并求出AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3.
(1)將y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)與y軸的交點坐標是 , 與x軸的交點坐標是;
(3)在坐標系中利用描點法畫出此拋物線.
x | … | … | |||||
y | … | … |
(4)不等式x2﹣2x﹣3>0的解集是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四邊形ABCD的面積是18,則DP的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校招聘一名數(shù)學老師,對應聘者分別進行了教學能力、科研能力和組織能力三項測試,其中甲、乙兩名應聘者的成績?nèi)缬冶恚海▎挝唬悍郑?/span>
教學能力 | 科研能力 | 組織能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根據(jù)三項測試的平均成績在甲、乙兩人中錄用一人,那么誰將被錄用?
(2)根據(jù)實際需要,學校將教學、科研和組織能力三項測試得分按 5:3:2 的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個頂點A為頂點,且過對角頂點C的拋物線,稱為這個正方形的以A為頂點的對角拋物線.
(1)在平面直角坐標系xOy中,點在軸正半軸上,點C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O為頂點的對角拋物線;
②如圖2,在平面直角坐標系xOy中,正方形OABC的邊長為a,其以O為頂點的對角拋物線的解析式為y= x2 , 求a的值;
(2)如圖3,正方形ABCD的邊長為4,且點A的坐標為(3,2),正方形的四條對角拋物線在正方形ABCD內(nèi)分別交于點M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com