【題目】近日,某中學舉辦了一次以“弘揚傳統(tǒng)文化”為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學生參加,為了更好地了解本次比賽成績的分布情況,學校分別從兩個年級隨機抽取了若干名學生的成績作為樣本進行分析,下面是初二年級學生成績樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分數(shù)段中的分數(shù)包括最低分,不包括最高分)
初二學生樣本成績頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | |
60~70 | 4 | 0.10 |
70~80 | 0.20 | |
80~90 | 14 | 0.35 |
90~100 | ||
合計 | 40 | 1.00 |
請根據(jù)所給信息,解答下列問題:
(1)補全成績頻數(shù)分布表和頻數(shù)分布直方圖.
(2)若初二學生成績樣本中80~90分段的具體成績?yōu)椋?/span>
80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89
①根據(jù)上述信息,估計初二學生成績的中位數(shù)為__________.
②若初一學生樣本成績的中位數(shù)為80,甲同學在比賽中得到了82分,在他所在的年級中位居275名,根據(jù)上述信息推斷甲同學所在年級為__________(選填“初一”或者“初二”).
③若成績在85分及以上均為“優(yōu)秀”,請你根據(jù)抽取的樣本數(shù)據(jù),估計初二年級學生中達到“優(yōu)秀”的學生人數(shù)為__________人.
【答案】(1)0.05,8,12,0.30,畫圖見解析;(2)①82.75,②初一,③270
【解析】
(1)根據(jù)題意先求出頻數(shù)和頻率,填入并補全成績頻數(shù)分布表和頻數(shù)分布直方圖即可;
(2)①由題意可知共40名學生,中位數(shù)應取第20和第21個數(shù)據(jù)的平均數(shù),進行分析計算求解;
②根據(jù)題意得出甲同學的成績高于所在年級的中位數(shù),求出初二年級的中位數(shù),進行比較分析;
③由題意得出80~90這一組中有6個數(shù)據(jù)在85分及以上,90~100這一組中有12個數(shù)據(jù),據(jù)此進行分析計算.
解:(1)頻數(shù)4÷0.10×0.20=8,40-2-4-8-14=12,頻率2÷40=0.05,1-0.10-0.20-0.35-0,05=0.30,
初二學生樣本成績頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | 0.05 |
60~70 | 4 | 0.10 |
70~80 | 8 | 0.20 |
80~90 | 14 | 0.35 |
90~100 | 12 | 0.30 |
合計 | 40 | 1.00 |
(2)①共40名學生,中位數(shù)應取第20和第21個數(shù)據(jù)的平均數(shù),
50~60,60~70,70~80,三組中共有個數(shù),
80~90這一組中有14個數(shù)據(jù),
根據(jù)具體成績可知,第20個數(shù)據(jù)為82.5,第21個數(shù)據(jù)為83,
所以中位數(shù)為.
故答案為:82.75.
②∵初一和初二各有600名同學參加,
甲同學位居所在年級的275名,
∴甲同學的成績高于所在年級的中位數(shù),
∵初一年級的中位數(shù)為80,
初二年級的中位數(shù)為82.5,
甲同學的成績?yōu)?/span>,
∴甲同學所在年級為初一.
故答案為:初一.
③80~90這一組中有6個數(shù)據(jù)在85分及以上,
90~100這一組中有12個數(shù)據(jù),
∴可估計初二年級學生中達到“優(yōu)秀”的學生人數(shù)為(人).
故答案為:270.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的個主題進行了抽樣調(diào)查(每位同學只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,直徑AC與弦BD的交點為E,OB∥CD,BH⊥AC,垂足為H,且∠BFA=∠DBC.
(1)求證:BF是⊙O的切線;
(2)若BH=3,求AD的長度;
(3)若sin∠DAC=,求△OBH的面積與四邊形OBCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數(shù)會落在 等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”倡議提出五年多來,交通、通信、能源等各項相關(guān)建設取得積極進展,也為增進各國民眾福祉提供了新的發(fā)展機遇.下圖是2017年“一年一路”沿線部分國家的通信設施現(xiàn)狀統(tǒng)計圖.
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( ).
A.互聯(lián)網(wǎng)服務器擁有個數(shù)最多的國家是阿聯(lián)酋
B.寬帶用戶普及率的中位數(shù)是11.05%
C.有8個國家的電話普及率能夠達到平均每人1部
D.只有俄羅斯的三項指標均超過了相應的中位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉辦運動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有( 。
①最快的選手到達終點時,最慢的選手還有15米未跑;
②跑的最快的選手用時4'46″;
③出發(fā)后最快的選手與最慢的選手相遇了兩次;
④出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時長.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線與的一個交點記為,與的一個交點記為,點的橫坐標是,點在第一象限內(nèi).
(1)求點的坐標及的表達式;
(2)點是線段上的一個動點,過點作軸的垂線,垂足為,在的右側(cè)作正方形.
①當點的橫坐標為時,直線恰好經(jīng)過正方形的頂點,求此時的值;
②在點的運動過程中,若直線與正方形始終沒有公共點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春臨大地,學校決定給長12米,寬9米的一塊長方形展示區(qū)進行種植改造現(xiàn)將其劃分成如圖兩個區(qū)域:區(qū)域Ⅰ矩形ABCD部分和區(qū)域Ⅱ四周環(huán)形部分,其中區(qū)域Ⅰ用甲、乙、丙三種花卉種植,且EF平分BD,G,H分別為AB,CD中點.
(1)若區(qū)域Ⅰ的面積為Sm2,種植均價為180元/m2,區(qū)域Ⅱ的草坪均價為40元/m2,且兩區(qū)域的總價為16500元,求S的值.
(2)若AB:BC=4:5,區(qū)域Ⅱ左右兩側(cè)草坪環(huán)寬相等,均為上、下草坪環(huán)寬的2倍
①求AB,BC的長;
②若甲、丙單價和為360元/m2,乙、丙單價比為13:12,三種花卉單價均為20的整數(shù)倍.當矩形ABCD中花卉的種植總價為14520元時,求種植乙花卉的總價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在Rt△ABC和Rt△DEF中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB=EF=6,如圖1,D是斜邊AB的中點,將等腰Rt△DEF繞點D順時針方向旋轉(zhuǎn)角α(0°<α<90°),在旋轉(zhuǎn)過程中,直線DE,AC相交于點M,直線DF,BC相交于點N.
(1)如圖1,當α=60°時,求證:DM=BN;
(2)在上述旋轉(zhuǎn)過程中,的值是一個定值嗎?請在圖2中畫出圖形并加以證明;
(3)如圖3,在上述旋轉(zhuǎn)過程中,當點C落在斜邊EF上時,求兩個三角形重合部分四邊形CMDN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com