【題目】如圖,兩地相距千米,甲、乙兩人都從地去地,圖中分別表示甲、乙兩人所走路程(千米)與時間(小時)之間的關(guān)系,下列說法: ①乙晚出發(fā)小時;②乙出發(fā)小時后追上甲;③甲的速度是千米/小時; ④乙先到達.其中正確的是__________(填序號)

【答案】:①③④

【解析】

根據(jù)函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.

解:由圖象可得,

乙晚出發(fā)1小時,故①正確;

3-1=2小時,∴乙出發(fā)2小時后追上甲,故②錯誤;

12÷3=4千米/小時,∴甲的速度是4千米/小時,故③正確;

相遇后甲還需8÷4=2小時到B地,相遇后乙還需8÷(12÷2) =小時到B地,乙先到達B地,故正確;

故答案為:①③④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,ADBE交于點O,ADBC交于點P,BECD交于點Q,連結(jié)PQ,以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ④DE=DP;⑤∠AOB=60°其中完全正確的是(

A.①②③④B.②③④⑤C.①③④⑤D.①②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段中點, 上一點,交于

1如圖,OA=OB中點時,的值;

2如圖,OA=OB,=求tan

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角三角形的判定

1)有一個角是________________的三角形是直角三角形.

2)有兩個角________________的三角形是直角三角形.

3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個三角形是直角三角形.

4)如果三角形一邊上的________________等于這邊的一半,那么這個三角形是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC上的一點,連結(jié)AE,作BF⊥AE,垂足為H,CDF,CG∥AE,BFG.

求證:(1CG=BH;(2FC2=BF·GF;(3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個直角三角形紙片放置在平面直角坐標系中,點

(1)為邊上一點(不與重合),沿將紙片折疊得的對應點,邊軸交于點

①如圖1,當點剛好落在軸上時,求點的坐標

②如圖2,當時,若線段軸上移動得到線段(線段平移時不動),當△AOQ′周長最小時,求OO′的長度.

(2)如圖3,若點為邊上一點(不與重合),沿將紙片折疊得的對應點,當時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側(cè)同時施工.為了使山的另一側(cè)的開挖點C在AB的延長線上,設想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(≈1.414,精確到1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CDAB邊上的中線,ECD的中點,過點CAB的平行線交AE的延長線于點F,連接BF

(1) 求證:CFAD;

(2) CACB,∠ACB90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,AB=8,點E是射線DC上一個動點(E與點D不重合),連接AE,BE,以BE為邊在線段AD的右側(cè)作正方形BEFG,連結(jié)CG

1)當點E在線段DC上時,求證:△BAE≌△BCG;

2)在(1)的條件下,若CE=2,求CG的長;

3)連接CF,當△CFG為等腰三角形時,求DE的長.

查看答案和解析>>

同步練習冊答案