【題目】已知∠α與∠β互余,且∠α=35°,則∠β=______°

【答案】55

【解析】

根據(jù)題意得出等式∠α+β=90°,代入求出即可.

∵∠α與∠β互余,

∴∠α+β=90°

∵∠α=35°,

∴∠β=55°,

故答案為:55°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的方格紙中,稱小正方形的頂點(diǎn)為格點(diǎn),頂點(diǎn)全在格點(diǎn)上的多邊形為格點(diǎn)多邊形”.格點(diǎn)多邊形的面積記為S,其內(nèi)部的格點(diǎn)數(shù)記為N,邊界上的格點(diǎn)數(shù)記為L,例如,圖中的三角形ABC是格點(diǎn)三角形,其中S=2N=0,L=6;圖中格點(diǎn)多邊形DEFGHI所對應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點(diǎn)多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時(shí),S= .(用數(shù)值作答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小時(shí),則∠AMN+∠ANM的度數(shù)為(

A.130°
B.120°
C.110°
D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(﹣3a2b32(﹣a3b25÷a2b4;
(2)( 2012×(﹣1.5)2013÷(﹣1)2014
(3)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y;
(4)(5x+7y﹣3)(5x﹣7y+3);
(5)(a+2b﹣c)2;
(6)(x+2y)2(x﹣2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中, ,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:① ∠AED=∠CED;② OE=OD;③ BH=HF;④ BC-CF=2HE;⑤ AB=HF,其中正確的有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算a3a2正確的是(  )
A.a
B.a5
C.a6
D.a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,如果兩個(gè)三角形全等,則它們面積相等,而兩個(gè)不全等的三角形,在某些情況下,可通過證明等底等高來說明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.

(1)如圖1,當(dāng)∠BCE=90°時(shí),求證:SACD=SBCE;
(2)如圖2,當(dāng)0°<∠BCE<90°時(shí),上述結(jié)論是否仍然成立?如果成立,請證明;如果不成立,說明理由.
(3)如圖3,在(2)的基礎(chǔ)上,作CF⊥BE,延長FC交AD于點(diǎn)G,求證:點(diǎn)G為AD中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x4)(x2)的對稱軸方程為(

A.直線x=-2B.直線x=1C.直線x=-4D.直線x=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩點(diǎn)在數(shù)軸上的位置如圖所示,其中點(diǎn)A對應(yīng)的有理數(shù)為-4,且AB=10。動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸正方向運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(t>0)。

1)當(dāng)t=1時(shí),AP的長為_________,點(diǎn)P表示的有理數(shù)為______;

2)當(dāng)PB=2時(shí),求t的值;

3M為線段AP的中點(diǎn),N為線段PB的中點(diǎn). 在點(diǎn)P運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長。

查看答案和解析>>

同步練習(xí)冊答案