【題目】如圖,函數(shù)與的圖像在第一象限內(nèi)交于點A,在求點A坐標時,小明由于看錯了k,解得A(1 , 3);小華由于看錯了m,解得A(1, ).
(1)求這兩個函數(shù)的關系式及點A的坐標;
(2)根據(jù)函數(shù)圖象回答:若,請直接寫出x的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點D、E分別是邊BC、AC的中點,連接DE.將△CDE繞點C逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
①當α=0°時,=_______;
②當α=180°時,=______.
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
△CDE繞點C逆時針旋轉(zhuǎn)至A、B、E三點在同一條直線上時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=x(x≥0)的圖象與反比例函數(shù)y=的圖象交于點A,若點A繞點B(,0)順時針旋轉(zhuǎn)90°后,得到的點A'仍在y=的圖象上,則點A的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當y>0時,﹣1<x<3,其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點O(0,0).A(8,4),與x軸交于另一點B,且對稱軸是直線x=3.
(1)求該二次函數(shù)的解析式;
(2)若M是OB上的一點,作MN∥AB交OA于N,當△ANM面積最大時,求M的坐標;
(3)P是x軸上的點,過P作PQ⊥x軸與拋物線交于Q.過A作AC⊥x軸于C,當以O,P,Q為頂點的三角形與以O,A,C為頂點的三角形相似時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,⊙O的半徑為r,在射線OM上任取一點P(不與點O重合),如果射線OM上的點P',滿足OP·OP'=r2,則稱點P'為點P關于⊙O的反演點.
在平面直角坐標系xOy中,已知⊙O的半徑為2.
(1)已知點A (4,0),求點A關于⊙O的反演點A'的坐標;
(2)若點B關于⊙O的反演點B'恰好為直線與直線x=4的交點,求點B的坐標;
(3)若點C為直線上一動點,且點C關于⊙O的反演點C'在⊙O的內(nèi)部,求點C的橫坐標m的范圍;
(4)若點D為直線x=4上一動點,直接寫出點D關于⊙O的反演點D'的橫坐標t的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設計的“以線段AB為一條對角線作一個菱形”的尺規(guī)作圖過程.
已知:線段AB.
求作:菱形ACBD.
作法:如圖,
①以點A為圓心,以AB長為半徑作⊙A;
②以點 B為圓心,以AB長為半徑作⊙B,
交⊙A 于C,D兩點;
③連接AC,BC,BD,AD.
所以四邊形ACBD就是所求作的菱形.
根據(jù)小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:∵點B,C,D在⊙A上,
∴AB=AC=AD( )(填推理的依據(jù)).
同理 ∵點A,C,D在⊙B上,
∴AB=BC=BD.
∴ = = = .
∴四邊形ACBD是菱形. ( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸負半軸交于點A,與x軸正半軸交于點B,與y軸交于點C.
(1)如圖1,若OB=2OA=2OC
①求拋物線的解析式;
②若M是第一象限拋物線上一點,若cos∠MAC=,求M點坐標.
(2)如圖2,直線EF∥x軸與拋物線相交于E、F兩點,P為EF下方拋物線上一點,且P(m,﹣2).若∠EPF=90°,則EF所在直線的縱坐標是否為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com