【題目】如圖,在Rt△ABC中,∠ACB=90,AB=10,AC=6,點(diǎn)E、F分別是邊AC、BC上的動(dòng)點(diǎn),過(guò)點(diǎn)E作ED⊥AB于點(diǎn)D,過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G,DG的長(zhǎng)始終為2.
(1)當(dāng)AD=3時(shí),求DE的長(zhǎng);
(2)當(dāng)點(diǎn)E、F在邊AC、BC上移動(dòng)時(shí),設(shè),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3) 在點(diǎn)E、F移動(dòng)過(guò)程中,△AED與△CEF能否相似,若能,求AD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
【答案】(1)DE=4;(2);(3)當(dāng)AD的長(zhǎng)為或時(shí),△AED與△CEF相似.
【解析】
(1)根據(jù)勾股定理先求出BC的長(zhǎng),再通過(guò)證明△ADE∽△ACB,根據(jù)相似三角形的性質(zhì)得出DE的長(zhǎng);
(2)通過(guò)證明△BGF∽△BCA,根據(jù)相似三角形的性質(zhì)得出y關(guān)于x的函數(shù)解析式;
(3)由(1)(2)可得:,分∠A=∠CEF,∠A=∠CFE兩種情況求出△AED與△CEF相似時(shí)AD的長(zhǎng).
解:(1)∵∠ACB=90°,AB=10,AC=6
∴BC=8(1分)
∵ED⊥AB∴∠ADE=∠ACB=90°
又∵∠A=∠A
∴△ADE∽△ACB
∴DE=4;
(2)∵FG⊥AB∴∠BGF=∠BCA=90°
又∵∠B=∠B
∴△BGF∽△BCA
;
(3)由(1)(2)可得:
當(dāng)∠A=∠CEF時(shí),解得:
當(dāng)∠A=∠CFE時(shí),解得:
∴當(dāng)AD的長(zhǎng)為或時(shí),△AED與△CEF相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn),過(guò)點(diǎn)作軸,垂足為點(diǎn),且。
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請(qǐng)直接寫出不等式的解集;
(3)若是反比例函數(shù)圖象上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC=CD,若點(diǎn)E、F分別為邊BC、CD上的兩點(diǎn),且∠EAF=∠CAD.
(1)求證:△ADF∽△ACE;
(2)求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=-x+2分別交x軸、y軸于點(diǎn)A,B,點(diǎn)D在BA的延長(zhǎng)線上,OD的垂直平分線交線段AB于點(diǎn)C.若△OBC和△OAD的周長(zhǎng)相等,則OD的長(zhǎng)是( )
A. 2B. 2C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+4x-1與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,AB∥x軸交拋物線于點(diǎn)A,B,點(diǎn)A在點(diǎn)B的左側(cè),且兩點(diǎn)均在第一象限,BH⊥CD于點(diǎn)H.設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)當(dāng)m=1時(shí),求AB的長(zhǎng).
(2)若AH=(CH-DH),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,、相交于點(diǎn),點(diǎn)是的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),,則下列結(jié)論:①;②;③;④,其中一定正確的是( ).
A.①②③④B.①②C.②③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BO向終點(diǎn)O運(yùn)動(dòng),在AB上以每秒5個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在BO上以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O出發(fā),沿OA方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.過(guò)點(diǎn)P作PE⊥AO于點(diǎn)E,以PE,EQ為鄰邊作矩形PEQF,設(shè)矩形PEQF與△ABO重疊部分圖形的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)連結(jié)PQ,當(dāng)PQ與△ABO的一邊平行時(shí),求t的值;
(2)求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com