【題目】四邊形四邊形,它們的面積比為,它們的對應對角線的比為________,若它們的周長之差為,則四邊形的周長為________

【答案】

【解析】

根據(jù)相似多邊形面積比等于相似比的平方,對應對角線的比等于相似比可得它們的對應對角線的比為3:2;根據(jù)相似多邊形面積比等于周長比的平方,四邊形ABCD∽四邊形A1B1C1D1,面積比為9:4,則周長比為3:2,周長差16cm,列出方程可求得周長.

∵四邊形ABCD∽四邊形A1B1C1D1,它們的面積比為9:4,∴它們的對應對角線的比為3:2,周長比為3:2,設四邊形周長分別為3x、2x,所以3x-2x=16,解得x=16.所以四邊形ABCD的周長為3x=3×16=48cm.故答案為48cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,進行如下操作:①分別以點A和點C為圓心,以大于的長為半徑作弧,兩弧分別相交于點M,N;②作直線MN,交線段AC于點D;③連接BD.則下列結論正確的是( )

A.BD平分∠ABCB.BDACC.AD=CDD.ABD≌△CBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的頂點坐標分別為A(﹣2,1),B(﹣4,1),C(﹣3,2),D(﹣1,2).

1)在圖中畫出四邊形ABCD,并求出四邊形ABCD的面積;

2)在圖中畫出四邊形ABCD關于x軸的對稱圖形A1B1C1D1,并分別寫出點A、C的對應點A1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將等腰直角三角形ABCABAC,∠BAC90°)和等腰直角三角形DEFDEDF,∠EDF90°)按圖1擺放,點DBC邊的中點上,點ADE上.

1)填空:ABEF的位置關系是   ;

2DEF繞點D按順時針方向轉動至圖2所示位置時,DFDE分別交AB,AC于點P,Q,求證:∠BPD+DQC180°;

3)如圖2,在DEF繞點D按順時針方向轉動過程中,始終點P不到達A點,ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1S2之間是否存在不變的數(shù)量關系?若存在,請寫出它們之間的數(shù)量關系并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊長方形的一邊AD,使點D落在BC邊上的點F處,BC10,AB8

求.(1FC的長

2EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,ABBC,ECD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點EMEAFBC于點M,連接AM、BD交于點N,現(xiàn)有下列結論:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點PA出發(fā),以每秒2厘米的速度向B運動,點QC同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,設運動的時間為t

⑴用含t的代數(shù)式表示:AP=   ,AQ=   

⑵當以AP,Q為頂點的三角形與ABC相似時,求運動時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線)與直線平行,且與直線交于點.

1)求直線的函數(shù)表達式;

2、分別是直線、上兩點,點的橫坐標為,且軸,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.

(1)第一次水果的進價是每千克多少元?

(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

同步練習冊答案