【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=20,點(diǎn)P在AB上,AP=6.點(diǎn)E以每秒2個(gè)單位長度的速度,從點(diǎn)P出發(fā)沿線段PA向點(diǎn)A作勻速運(yùn)動(dòng),點(diǎn)F同時(shí)以每秒1個(gè)單位長度的速度,從點(diǎn)P出發(fā)沿線段PB向點(diǎn)B作勻速運(yùn)動(dòng),點(diǎn)E到達(dá)點(diǎn)A后立刻以原速度沿線段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止.在點(diǎn)E、F運(yùn)動(dòng)過程中,以EF為邊作正方形EFGH,使它與△ABC在線段AB的同側(cè).設(shè)E、F運(yùn)動(dòng)的時(shí)間為t秒(t>0),正方形EFGH與△ABC重疊部分的面積為S.
(1)當(dāng)t=1時(shí),正方形EFGH的邊長是 ;當(dāng)t=4時(shí),正方形EFGH的邊長是 ;
(2)當(dāng)0<t≤3時(shí),求S與t的函數(shù)關(guān)系式.
【答案】(1)3; 8. (2)S=.
【解析】
試題分析:(1)當(dāng)t=1時(shí),根據(jù)PE=2t,PF=t即可求出EF的值,當(dāng)t=4時(shí),點(diǎn)E運(yùn)動(dòng)到點(diǎn)A后返回,PE=2AP-2t,PF=t,由此即可求出EF的值;
(2)當(dāng)點(diǎn)H在線段AC上時(shí),可求出t=,可分兩種情況討論:當(dāng)0<t≤時(shí),S=S正方形EFGH=EF2,只需用t的代數(shù)式表示出EF即可解決問題;當(dāng)<t≤3時(shí),S=S五邊形EFGMN=S正方形EFGH-S△MHN=EF2-HNHM,只需用t的代數(shù)式分別表示出EF、HN、HM即可解決問題.
試題解析:(1)當(dāng)t=1時(shí),PE=2×1=2,PF=1×1=1,EF=EP+PF=2+1=3.
當(dāng)t=4時(shí),PE=12-2×4=4,PF=1×4=4,EF=EP+PF=4+4=8.
(2)當(dāng)點(diǎn)H在線段AC上時(shí),
則有AE=HE=EF,即6-2t=3t,
解得:t=.
①當(dāng)0<t≤時(shí),
EF=EP+PF=2t+t=3t,
則S=9t2;
②當(dāng)<t≤3時(shí),
∵∠C=90°,AC=BC,
∴∠A=45°.
∵四邊形EFGH是正方形,
∴HE=EF=3t,∠H=∠HEF=90°,
∴∠ANE=90°-45°=45°,
∴∠ANE=∠A=45°,
∴NE=AE=AP-EP=6-2t,
∴HN=HE-NE=3t-(6-2t)=5t-6.
∵∠HNM=∠ANE=45°,
∴∠HMN=90°-45°=45°,
∴∠HMN=∠HNM=45°,
∴HM=HN=5t-6,
∴S=S正方形EFGH-S△NHM
=(3t)2-(5t-6)2
=-t2+30t-18.
綜上所述:S與t的函數(shù)關(guān)系式為
S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的計(jì)算正確的是( )
A.8a﹣7a=1
B.2a+3a2=5a3
C.﹣(a﹣b)=﹣a+b
D.2(a﹣b)=2a﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形的兩邊長為3和8,第三邊長為奇數(shù),則第三邊長為( )
A. 5或7 B. 7或9 C. 7 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球比賽的記分為:勝一場得3分,平一場得1分,負(fù)一場得0分,一隊(duì)打了14場比賽,負(fù)5場,共得19分,那么這個(gè)隊(duì)勝了( )
A. 6場 B. 5場 C. 4場 D. 3場
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點(diǎn)A關(guān)于y軸對稱的點(diǎn)的坐標(biāo):______
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo):___________
(3)請直接寫出以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo):____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)、B(4,0)、C(3,3)、D(1,4).
(1)描出A、B、C、D四點(diǎn)的位置,并順次連結(jié)ABCD.
(2)四邊形ABCD的面積是 .
(3)把四邊形ABCD向左平移5個(gè)單位,再向上平移1個(gè)單位得到四邊形A′B′C′D′,在圖在畫出四邊形A′B′C′D′,并寫出點(diǎn)A′、B′、C′、D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩件服裝的成本共500元,商店老板為獲取利潤,決定將甲服裝按50%的利潤定價(jià),乙服裝按40%的利潤定價(jià).在實(shí)際出售時(shí),應(yīng)顧客要求,兩件服裝均按9折出售,這樣商店共獲利157元,求甲、乙兩件服裝的成本各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過點(diǎn)A(0,4)和B(1,-2).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點(diǎn)C的坐標(biāo),并求出△CAO的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com