【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
【答案】(1)y=﹣x2+4x+5(2)點P(, )時,S四邊形APCD最大=
【解析】(1)利用頂點式即可求出二次函數解析式;
(2)先求出直線AB的解析式,設出點P坐標(x,-x2+4x+5),建立函數關系式S四邊形APCD=×AC×PD=2(-x2+5x)=-2x2+10x,根據二次函數求出極值即可.
解:(1)設拋物線解析式為y=a(x﹣2)2+9,
∵拋物線與y軸交于點A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5,
(2)當y=0時,﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
設直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直線AB的解析式為y=﹣x+5;
設P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
∵AC=4,
∴S四邊形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x=﹣(x﹣)2+,
∵﹣1<0
∴當x=時,
∴即:點P(, )時,S四邊形APCD最大=.
科目:初中數學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā), 到達目的地后停止,設慢車行駛時間為 x 小時,兩車之間的距離為 y 千米,兩者的關系如圖 所示:
(1)兩車出發(fā) 小時后相遇;
(2)求快車和慢車的速度;
(3)求線段 BC 所表示的 y 與 x 的 關系式,并求兩車相距 300 千米時的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強市民的節(jié)水意識,合理利用水資源,某市采用階梯收費的調控手段以達到節(jié)水的目的,該市自來水收費價目表如下:
每月用水量 | 價格 | 注:水費按月結算,每戶每月須繳納5元污水處理費. |
不超出6m3的部分 | 2元/m3 | |
超出6m3不超出10m3的部分 | 3元/m3 | |
超出10m3的部分 | 5元/m3 |
若某戶居民月份用水,則應繳費(元),
(1)若用戶月份共用水,則需繳費________;
(2)若該戶居民某月繳費元,則該戶居民該月用水多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=3x2+36x+81.
(1)寫出它的頂點坐標;
(2)當x取何值時,y隨x的增大而增大;
(3)求出圖象與x軸的交點坐標;
(4)當x取何值時,y有最小值,并求出最小值;
(5)當x取何值時,y<0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某公園設計節(jié)日鮮花擺放方案,其中一個花壇由一批花盆堆成六角垛,頂層一個,以下各層堆成六邊形,逐層每邊增加一個花盆,若這垛花盆底層最長的一排共13個花盆,則底層的花盆的個數是( )
A.91B.127C.169D.255
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,AB∥CD,點 E 為射線 FG 上一點.
(1)如圖 1,若∠EAF=30°,∠EDG=40°,則∠AED= °;
(2)如圖 2,當點 E 在 FG 延長線上時,此時 CD 與 AE 交于點 H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關系,請說明你的結論;
(3)如圖 3,DI 平分∠EDC,交 AE 于點 K,交 AI 于點 I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l上,且點C位于點M處,將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,則y關于x的函數圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為準備聯(lián)合韻律操表演,甲、乙兩校共100人準備統(tǒng)一購買服裝(一人買一套)參加表演,其中甲校人數多于乙校人數,下面是服裝廠給出的演出服裝的價格表:
如果兩所學校分別單獨購買服裝,一共應付5710元.
(1)如果甲、乙兩校聯(lián)合起來購買服裝,那么比各自購買服裝共可以節(jié)省多少錢?
(2)甲、乙兩校各有多少學生準備參加表演?
(3)如果甲校有9名同學抽調去參加迎奧運書法比賽不能參加演出,那么你有幾種購買方案,通過比較,你該如何購買服裝才能最省錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過⊙O外一點P作⊙O的兩條切線PA,PB,切點分別為A,B.下列結論中:
①OP垂直平分AB;
②∠APB=∠BOP;
③△ACP≌△BCP;
④PA=AB;
⑤若∠APB=80°,則∠OBA=40°.
一定正確的是___.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com