在等腰△ABC中,BC=8,AB、AC的長是關(guān)于x的方程x2-10x+m=0的兩根,求△ABC的周長.
分析:討論:根據(jù)等腰三角形性質(zhì)當AB=BC=8,把x=8代入方程可得到m=16,此時方程另一根為2,滿足三角形三邊關(guān)系;當AB=AC,根據(jù)根與系數(shù)得關(guān)系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.
解答:解:當AB=BC=8,把x=8代入方程得64-80+m=0,解得m=16,
此時方程為x2-10x+16=0,解得x1=8,x2=2;
當AB=AC,則AB+AC=10,所以AB=AC=5,則m=5×5=25.
所以等腰三角形ABC的周長為25或16.
答:等腰三角形ABC的周長為25或16.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
.也考查了三角形三邊的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖所示,在等腰△ABC中,點D是BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對全等三角形(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點是點D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點M旋轉(zhuǎn),使旋轉(zhuǎn)后的點D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點,過D點作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說明DE=DF;
(2)求EF長.

查看答案和解析>>

同步練習冊答案