【題目】如圖,AD是ABC的角平分線,DFAB,垂足為F,DE=DG,ADG和AED的面積分別為25和17,則EDF的面積為(  )

A. 4 B. 5 C. 5.5 D. 6

【答案】A

【解析】

過點DDH⊥ACH,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,然后利用“HL”證明RtDEFRtDGH全等,根據(jù)全等三角形的面積相等可得SEDF=SGDH,設面積為S,然后根據(jù)SADF=SADH列出方程求解即可.

如圖,過點DDHACH,

ADABC的角平分線,DFAB,

DF=DH,

RtDEFRtDGH中,

,

RtDEFRtDGH(HL),

SEDF=SGDH,設面積為S,

同理RtADFRtADH,

SADF=SADH,

17+S=25S,

解得S=4.

故答案選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】梧州市特產(chǎn)批發(fā)市場有龜苓膏粉批發(fā),其中A品牌的批發(fā)價是每包20元,B品牌的批發(fā)價是每包25元,小王需購買A,B兩種品牌的龜苓膏粉共1000包.

(1)若小王按需購買A,B兩種品牌龜苓膏粉共用22000元,則各購買多少包?

(2)憑會員卡在此批發(fā)市場購買商品可以獲得8折優(yōu)惠,會員卡費用為500元.若小王購買會員卡并用此卡按需購買1000包龜苓膏粉,共用了y元,設A品牌買了x包,請求出yx之間的函數(shù)關系式;

(3)(2)中,小王共用了20000元,他計劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費8元,若每包銷售價格A品牌比B品牌少5元,請你幫他計算,A品牌的龜苓膏粉每包定價不低于多少元時才不虧本?(運算結果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在已知的ABC中,按以下步驟作圖:
①分別以B,C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M,N;
②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )

A.90°
B.95°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了推動球類運動的普及,成立多個球類運動社團,為此,學生會采取抽樣調查的方法,從足球、乒乓球、籃球、排球四個項目調查了若干名學生的興趣愛好(要求每位同學只能選擇其中一種自己喜歡的球類運動),并將調查結果繪制成了如下條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整).請你根據(jù)圖中提供的信息,解答下列問題:

1)本次抽樣調查,共調查了 名學生;

2)請將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;

3)若該學校共有學生1800人,根據(jù)以上數(shù)據(jù)分析,試估計選擇排球運動的同學約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點O(0,0),A(3,0),點B在y軸正半軸上,且OAB的面積為6,求點B的坐標及直線AB對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1的函數(shù)表達式為y=﹣2x+2,且與x軸交于點A,直線l2經(jīng)過點B(5,0)且與l1交于點C,已知點C的橫坐標是2.

(1)求點A和點C的坐標;

(2)若在直線l2上存在異于點C的另一點M,使得ABM與ABC的面積相等,試求點M的坐標.

(3)在y軸上求點P的坐標,使得PA+PC最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中AD∥BC,對角線AC、BD相交于點O,若AO:CO=2:3,AD=4,則BC等于( 。
A.12
B.8
C.7
D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)樓房附近有一個斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點處觀察點A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結果精確到0.1m)

查看答案和解析>>

同步練習冊答案