如圖,給出下列四個條件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC的條件是(

A.①②
B.③④
C.②④
D.①③④
【答案】分析:欲證AC∥BD,在圖中發(fā)現(xiàn)AC、BD被一直線所截,故可按同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補(bǔ),兩直線平行補(bǔ)充條件.
解答:解:①AC=BD,不能判斷兩直線平行,故錯誤;
②∠DAC=∠BCA,根據(jù)內(nèi)錯角相等,兩直線平行可得AD∥BC,故正確;
③∠ABD和∠CDB是直線AB、CD被BD所截形成的內(nèi)錯角,故可得AB∥CD,故錯誤;
④∠ADB=∠CBD,根據(jù)內(nèi)錯角相等,兩直線平行可得AD∥BC,故正確.
故選C.
點(diǎn)評:正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關(guān)鍵,只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、探索下列問題:
(1)在圖1給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2.①請你在圖2中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請你在圖3中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖4)分割成面積相等的兩部分,請簡略說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•池州一模)我們知道:由于圓是中心對稱圖形,所以過圓心的任何一條直線都可以將圓分割成面積相等的兩部分(如圖1).
探索下列問題:
(1)在如圖2給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2
①請你在如圖3中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請你在如圖4中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖5)分割成面積相等的兩部分?請簡略說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北 題型:解答題

探索下列問題:
(1)在圖1給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2.①請你在圖2中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請你在圖3中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖4)分割成面積相等的兩部分,請簡略說出理由.

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《23.2 中心對稱》2010年同步練習(xí)3(解析版) 題型:解答題

探索下列問題:
(1)在圖1給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2.①請你在圖2中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請你在圖3中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖4)分割成面積相等的兩部分,請簡略說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年安徽省池州市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

我們知道:由于圓是中心對稱圖形,所以過圓心的任何一條直線都可以將圓分割成面積相等的兩部分(如圖1).
探索下列問題:
(1)在如圖2給出的四個正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2
①請你在如圖3中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請你在如圖4中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個任意的平面圖形(如圖5)分割成面積相等的兩部分?請簡略說出理由.

查看答案和解析>>

同步練習(xí)冊答案