【題目】H7N9型禽流感是一種新型禽流感,于2013年3月底在上海和安徽兩地率先發(fā)現(xiàn).H7N9型禽流感是全球首次發(fā)現(xiàn)的新亞型流感病毒,其細(xì)胞的直徑約為0.000000106m,用科學(xué)記數(shù)法表示這個(gè)數(shù)是( )
A.0.106×106m
B.0.106×106m
C.1.06×107m
D.1.06×107m

【答案】C
【解析】解:0.00 000 010 6=1.06×107
故選:C.
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10n , 與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】飛機(jī)表演的“飛機(jī)拉線”用數(shù)學(xué)知識(shí)解釋為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正數(shù)的平方根是2m3m+6,則m的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1y=(x-1)2+1與y軸交于點(diǎn)A,過點(diǎn)A與點(diǎn)(1,3)的直線與C1交于點(diǎn)B

(1) 求直線AB的函數(shù)表達(dá)式

(2) 如圖1,若點(diǎn)P為直線AB下方的C1上一點(diǎn),求點(diǎn)P到直線AB的距離的最大值

(3) 如圖2,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點(diǎn)C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點(diǎn)為D,兩拋物線相交于點(diǎn)E.設(shè)交點(diǎn)E的橫坐標(biāo)為m.若∠AED=90°,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD為菱形,點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn).

1)如圖1,連接AP并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)E,連接 PC,求證AEB=PCD.

2)如圖1,當(dāng)PA=PDPCBE時(shí),求∠ABC的度數(shù).

3)連接AP并延長(zhǎng)交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°ΔPCE是等腰三角形,求得∠PEC的度數(shù) 3 直接寫出結(jié)果,不寫過程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條開口向下的拋物線的頂點(diǎn)坐標(biāo)是(2,3),則這條拋物線有(
A.最大值3
B.最小值3
C.最大值2
D.最小值﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點(diǎn)D,經(jīng)過B、D兩點(diǎn)的⊙O交AB 于點(diǎn)E,交BC于點(diǎn)F,EB為⊙O的直徑.

(1)求證:AC是⊙O的切線;

(2)當(dāng)BC=2,cos∠ABC=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義運(yùn)算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案