如圖,是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在軸上,點(diǎn)B在軸上,。將折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC;
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點(diǎn)的拋物線的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
如圖,是一張放在平面直角坐標(biāo)系中的矩形紙片,為原點(diǎn),點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,.
(1
)在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn)處,求點(diǎn),的坐標(biāo);(2
)若過點(diǎn)的拋物線與軸相交于點(diǎn),求拋物線的解析式和對稱軸方程;(3
)若(2)中的拋物線與軸交于點(diǎn),在拋物線上是否存在點(diǎn),使的內(nèi)心在坐標(biāo)軸上?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.(4
)(本小題為附加題,滿分3分,計入卷面總分.如果你有時間,不妨試一試。若(2)中的拋物線與軸相交于點(diǎn),點(diǎn)在線段上移動,作直線,當(dāng)點(diǎn)移動到什么位置時,兩點(diǎn)到直線的距離之和最大?請直接寫出此時點(diǎn)的坐標(biāo)及直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)如圖,∠DAB=∠CAE,請補(bǔ)充一個條件:,使△ABC∽△ADE.
(2)如圖,是一張放在平面直角坐標(biāo)系中的矩形紙片,為原點(diǎn),點(diǎn)在軸的正半軸上,點(diǎn)在軸的正半軸上,.在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn)處,求兩點(diǎn)的坐標(biāo);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com