如圖有一個Rt△ABC,∠A=90°∠B=60°,AB=1,將它放在直角坐標(biāo)系中,使斜邊BC在x軸上,直角頂點A在反比例函數(shù)的圖象上,求點C的坐標(biāo).

答案:
解析:

本題共有4種情況.

  (1)過點A作AD⊥BC于D.則,∴點A的縱坐標(biāo)為.將其代入,得x=2,即OD=2.在Rt△ADC中,,所以.即點的坐標(biāo)為(,0)

  (2)過點A作AE⊥BC于E,則,OE=2,.所以.即點的坐標(biāo)為(,0).根據(jù)雙曲線的對稱性.得點的坐標(biāo)為(,0),點的坐標(biāo)為(,0)所以點C的坐標(biāo)分別為:(,0),(,0)(,0),(,0).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個矩形CFED,點D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當(dāng)h等于30時,求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)x=-
b
2a
時,y最大(。┲=
4ac-b2
4a
.)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為一Rt△ABC,∠ACB=90°,則:
(1)到此三角形三邊距離相等的點有多少個?
(2)用尺規(guī)在此三角形內(nèi)部作出一個滿足上述條件的點.
(3)若三角形三邊分別為BC=a,AC=b,AB=c,求出(2)中點到三邊的距離.(用a,b,c表示)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•荊州二模)如圖①,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一個等腰梯形DEFG(GF‖DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點,P點為AG上的一動點.
(1)填空:等腰梯形DEFG的面積為
6
6

(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設(shè)運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖②).
探究1:設(shè)在運動過程中△ABC與等腰梯形DEF′G′重疊部分的面積為y,直接寫出y與x的函數(shù)關(guān)系式和自變量x的取值范圍;
探究2:在運動過程中,四邊形BDG′G能否是菱形?若能,設(shè)過動點P且平分此菱形面積的直線交GF于去,當(dāng)S△PGQ=
2
8
時,求P點的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AC=4,BC=3.在Rt△ABC內(nèi)并排放入(不重疊)n個小正方形紙片,使這些紙片的一邊都在AB上,首尾兩個正方形各有一個頂點D、E分別在AC、BC上,求小正方形的邊長(用n的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案