【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當DM=1時,求MN的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由圓周角推論可得∠A+∠ABD=90°,由切線性質(zhì)可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;
(2)由角平分線及三角形外角性質(zhì)可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據(jù)勾股定理可求得MN的長.
試題解析:(1)如圖,連接OD,∵AB為⊙O的直徑,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD與⊙O相切于點D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;
(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出依次行走停點E、F、M、N的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點C從A點出發(fā),在邊AO上以2cm/s的速度向O點運動,與此同時,點D從點B出發(fā),在邊BO上以1.5cm/s的速度向O點運動,過OC的中點E作CD的垂線EF,則當點C運動了 s時,以C點為圓心,1.5cm為半徑的圓與直線EF相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,三角形ABC的頂點都在網(wǎng)格點上。
(1)平移三角形ABC,使點C與坐標原點O是對應(yīng)點,請畫出平移后的三角形A′B′C′;
(2)寫出A、B兩點的對應(yīng)點A′、B′的坐標;
(3)求出三角形ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校去年投資2萬元購買實驗器材,預(yù)計今明2年的投資總額為8萬元.若該校這兩年購買的實驗器材的投資年平均增長率為x,則可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖方式擺放,兩個直角頂點重合,∠A=60°,∠E=∠B=45°.
(1)求證:∠ACE=∠BCD;
(2)猜想∠ACB與∠ECD數(shù)量關(guān)系并說明理由;
(3)按住三角板ACD不動,繞點C旋轉(zhuǎn)三角板ECB,探究當∠ACB等于多少度時,AD∥CB.請在備用圖中畫出示意圖并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四川抗震救災(zāi)中,某搶險地段需實行爆破.操作人員點燃導(dǎo)火線后,要在炸藥爆炸前跑到400 m以外的安全區(qū)域.已知導(dǎo)火線的燃燒速度是1.2 cm/s,操作人員跑步的速度是5 m/s.為了保證操作人員的安全,導(dǎo)火線的長度要超過( )
A.66 cm
B.76 cm
C.86 cm
D.96 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(x+3)(x﹣4)=0的兩個根為( 。
A. x1=﹣2,x2=6B. x1=﹣6,x2=2C. x1=﹣3,x2=4D. x1=﹣4,x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年全國國民生產(chǎn)總值約為74 000 000 000 000元,比上年增長6.7%,將74 000 000 000 000元用科學(xué)計數(shù)法表示為( )元
A.0.74×1014
B.7.4×1013
C.74×1012
D.7.40×1012
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com