【題目】如圖,直線與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線經(jīng)過(guò)點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為線段OA上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N.
①試用含m的代數(shù)式表示PN的長(zhǎng);
②m為何值時(shí)△ABN面積最大,并求△ABN的最大值.
【答案】(1)B(0,2);;(2)①;②時(shí),△ABN面積最大,△ABN面積最大值為.
【解析】
(1)把A點(diǎn)坐標(biāo)代入直線解析式可求得c,則可求得B點(diǎn)坐標(biāo),由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)①M(m,0),則P(m,),N(m,),即可求出PN的長(zhǎng);
②先得到S與m的關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)可得面積的最大值.
解:(1)直線與x軸交于點(diǎn)A(3,0),
∴,解得:c=2;
∴B(0,2),
∵拋物線經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(0,2),
∴,
∴,
∴拋物線的解析式為:;
(2)①∵MN⊥x軸,M(m,0),
∴N(m,),P(m,-),
∴;
②根據(jù)題意,有
∴時(shí),△ABN面積最大,△ABN面積最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過(guò)點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)的圖象分別交于點(diǎn)B1、B2、B3,分別過(guò)點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連結(jié)OB1、OB2、OB3,那么圖中陰影部分的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過(guò)點(diǎn)D作⊙O的切線DE交BC于點(diǎn)E;(保留作圖痕跡,不寫(xiě)作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長(zhǎng)EO交⊙O于F,連接DF,與OA交于點(diǎn)G,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+1與反比例函數(shù)y=的圖象相交于點(diǎn)A、B,過(guò)點(diǎn)A作AC⊥x軸,垂足為點(diǎn)C(﹣2,0),連接AC、BC.
(1)求反比例函數(shù)的解析式;
(2)求S△ABC;
(3)利用函數(shù)圖象直接寫(xiě)出關(guān)于x的不等式﹣x+1<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2-2mx+m2+3(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒(méi)有公共點(diǎn);
(2)把該函數(shù)的圖象沿y軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣2,﹣,0,4中任取一個(gè)數(shù)記為m,再?gòu)挠嘞碌娜齻(gè)數(shù)中,任取一個(gè)數(shù)記為n,若k=mn.
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示取出數(shù)字的所有結(jié)果;
(2)求正比例函數(shù)y=kx的圖象經(jīng)過(guò)第一、三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線y=x+m與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,4),B點(diǎn)在y軸上.P(a,0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為2,求△ODE的面積;
(3)當(dāng)0<a<3時(shí),求線段DE的最大值;
(4)若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長(zhǎng)方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問(wèn)題:
(1)在第n個(gè)圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為 (用含n的代數(shù)式表示,n表示第n個(gè)圖形)
(2)上述鋪設(shè)方案,鋪一塊這樣的長(zhǎng)方形地面共用了506塊瓷磚,求此時(shí)n的值;
(3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com