【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長(zhǎng)交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.
【答案】
(1)
證明:①在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等邊△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E為AB的中點(diǎn),
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
②在△ABC中,∠ACB=90°,E為AB的中點(diǎn),
∴CE= AB,BE= AB.
∴CE=AE,
∴∠EAC=∠ECA=30°,
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四邊形BCFD是平行四邊形
;
證明:①在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等邊△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E為AB的中點(diǎn),
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
②在△ABC中,∠ACB=90°,E為AB的中點(diǎn),
∴CE= AB,BE= AB.
∴CE=AE,
∴∠EAC=∠ECA=30°,
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四邊形BCFD是平行四邊形
;證明:①在△ABC中,∠ACB=90°,∠CAB=30°,
∴∠ABC=60°.
在等邊△ABD中,∠BAD=60°,
∴∠BAD=∠ABC=60°.
∵E為AB的中點(diǎn),
∴AE=BE.
又∵∠AEF=∠BEC,
∴△AEF≌△BEC.
②在△ABC中,∠ACB=90°,E為AB的中點(diǎn),
∴CE= AB,BE= AB.
∴CE=AE,
∴∠EAC=∠ECA=30°,
∴∠BCE=∠EBC=60°.
又∵△AEF≌△BEC,
∴∠AFE=∠BCE=60°.
又∵∠D=60°,
∴∠AFE=∠D=60°.
∴FC∥BD.
又∵∠BAD=∠ABC=60°,
∴AD∥BC,即FD∥BC.
∴四邊形BCFD是平行四邊形
(2)
解:∵∠BAD=60°,∠CAB=30°,
∴∠CAH=90°.
在Rt△ABC中,∠CAB=30°,設(shè)BC=a,
∴AB=2BC=2a.
∴AD=AB=2a.
設(shè)AH=x,則HC=HD=AD﹣AH=2a﹣x,
在Rt△ABC中,AC2=(2a)2﹣a2=3a2,
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,
解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH= .
;
解:∵∠BAD=60°,∠CAB=30°,
∴∠CAH=90°.
在Rt△ABC中,∠CAB=30°,設(shè)BC=a,
∴AB=2BC=2a.
∴AD=AB=2a.
設(shè)AH=x,則HC=HD=AD﹣AH=2a﹣x,
在Rt△ABC中,AC2=(2a)2﹣a2=3a2,
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,
解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH= .
;解:∵∠BAD=60°,∠CAB=30°,
∴∠CAH=90°.
在Rt△ABC中,∠CAB=30°,設(shè)BC=a,
∴AB=2BC=2a.
∴AD=AB=2a.
設(shè)AH=x,則HC=HD=AD﹣AH=2a﹣x,
在Rt△ABC中,AC2=(2a)2﹣a2=3a2,
在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,
解得x= a,即AH= a.∴HC=2a﹣x=2a﹣ a= a.∴sin∠ACH= .
【解析】(1)①在△ABC中,由已知可得∠ABC=60°,從而推得∠BAD=∠ABC=60°.由E為AB的中點(diǎn),得到AE=BE.又因?yàn)椤螦EF=∠BEC,所以△AEF≌△BEC.②在Rt△ABC中,E為AB的中點(diǎn),則CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因?yàn)椤螧AD=∠ABC=60°,所以AD∥BC,即FD∥BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,設(shè)BC=a,則AB=2BC=2a,AD=AB=2a.設(shè)AH=x,則HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2 . 在Rt△ACH中,由勾股定理得AH2+AC2=HC2 , 即x2+3a2=(2a﹣x)2 . 解得x= a,即AH= a.求得HC的值后,利用sin∠ACH=AH:HC求值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對(duì)平行四邊形的判定的理解,了解兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,記m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.則下列選項(xiàng)正確的是( 。
A.m<n
B.m>n
C.m=n
D.m、n的大小關(guān)系不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市一中準(zhǔn)備組織學(xué)生及學(xué)生家長(zhǎng)到武漢大學(xué)參觀體驗(yàn),為了便于管理,所有人員到武漢必須乘坐在同一列動(dòng)車上;根據(jù)報(bào)名人數(shù),若都買 一等座單程火車票需2556元,若都買二等座單程火車票且花錢最少,則需1530元;已知學(xué)生家長(zhǎng)與教師的人數(shù)之比為2:1,安陸到武漢的動(dòng)車票價(jià)格(動(dòng) 車學(xué)生票只有二等座可以打6折)如下表所示:
(1)參加參觀體驗(yàn)的老師、家長(zhǎng)與學(xué)生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加參觀體驗(yàn)的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請(qǐng)你設(shè)計(jì)最經(jīng)濟(jì)的購(gòu)票方案,并寫出購(gòu)買火車票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式.
(3)請(qǐng)你做一個(gè)預(yù)算,按第(2)小題中的購(gòu)票方案,購(gòu)買單程火車票的總費(fèi)用至少是多少錢?最多是多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與y軸相交于點(diǎn)A(0,3),與x正半軸相交于點(diǎn)B,對(duì)稱軸是直線x=1
(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).
(2)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過動(dòng)點(diǎn)M作x軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPN為矩形.
②當(dāng)t>0時(shí),△BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果任意選擇一對(duì)有序整數(shù)(m,n),其中|m|≤1,|n|≤3,每一對(duì)這樣的有序整數(shù)被選擇的可能性是相等的,那么關(guān)于x的方程x2+nx+m=0有兩個(gè)相等實(shí)數(shù)根的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)問題進(jìn)行計(jì)算:
(1)計(jì)算:(x+3)(x﹣3)﹣x(x﹣2)
(2)解不等式組: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com