【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1經(jīng)過點(diǎn)A(4,0)、B(1,0),其頂點(diǎn)為

1)求拋物線C1的表達(dá)式;

2)將拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,求拋物線C2的表達(dá)式;

3)再將拋物線C2沿x軸向右平移得到拋物線C3,設(shè)拋物線C3x軸分別交于點(diǎn)E、F(EF左側(cè)),頂點(diǎn)為G,連接AG、DF、ADGF,若四邊形ADFG為矩形,求點(diǎn)E的坐標(biāo).

【答案】1y;(2;(3E(,0)

【解析】

1)根據(jù)拋物線C1的頂點(diǎn)坐標(biāo)可設(shè)頂點(diǎn)式將點(diǎn)B坐標(biāo)代入求解即可;

(2)由拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°得到拋物線C2知拋物線C2的頂點(diǎn)坐標(biāo),可設(shè)拋物線C2的頂點(diǎn)式,根據(jù)旋轉(zhuǎn)后拋物線C2開口朝下,且形狀不變即可確定其表達(dá)式;

3)作GKx軸于GDHABH,由題意GK=DH=3AH=HB=EK=KF,結(jié)合矩形的性質(zhì)利用兩組對(duì)應(yīng)角分別相等的兩個(gè)三角形相似可證△AGK∽△GFK,由其對(duì)應(yīng)線段成比例的性質(zhì)可知AK長,結(jié)合A、B點(diǎn)坐標(biāo)可知BK、BE、OE長,可得點(diǎn)E坐標(biāo).

解:(1)∵拋物線C1的頂點(diǎn)為,

∴可設(shè)拋物線C1的表達(dá)式為y

B(1,0)代入拋物線解析式得:

,

解得:a

∴拋物線C1的表達(dá)式為y,即y

2)設(shè)拋物線C2的頂點(diǎn)坐標(biāo)為

∵拋物線C1繞點(diǎn)B旋轉(zhuǎn)180°,得到拋物線C2,即點(diǎn)與點(diǎn)關(guān)于點(diǎn)B(10)對(duì)稱

∴拋物線C2的頂點(diǎn)坐標(biāo)為()

可設(shè)拋物線C2的表達(dá)式為y

∵拋物線C2開口朝下,且形狀不變

∴拋物線C2的表達(dá)式為y,即

3)如圖,作GKx軸于G,DHABH

由題意GK=DH=3AH=HB=EK=KF,

∵四邊形AGFD是矩形,

∴∠AGF=GKF=90°,

∴∠AGK+KGF=90°,∠KGF+GFK=90°,

∴∠AGK=GFK

∵∠AKG=FKG=90°,

∴△AGK∽△GFK

,

AK=6,

BE=BKEK=3,

OE,

E(,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。

(1)求證:AE是⊙O的切線;

(2)若,AE=8,求⊙O的半徑;

(3)在(2)條件下,求BF的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是ABC的邊AB上一點(diǎn),O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當(dāng)BC=3,sinA=時(shí),求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣10),B3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線對(duì)稱軸DEx軸于點(diǎn)E,連接BD

1)求經(jīng)過AB,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PEPC時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解學(xué)生平均每天“誦讀經(jīng)典”的時(shí)間,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(設(shè)每天的誦讀時(shí)間為分鐘),將調(diào)查統(tǒng)計(jì)的結(jié)果分為四個(gè)等級(jí):Ⅰ級(jí)、Ⅱ級(jí)、Ⅲ級(jí)、Ⅳ級(jí).將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

)請(qǐng)補(bǔ)全上面的條形圖.

)所抽查學(xué)生“誦讀經(jīng)典”時(shí)間的中位數(shù)落在__________級(jí).

)如果該校共有名學(xué)生,請(qǐng)你估計(jì)該校平均每天“誦讀經(jīng)典”的時(shí)間不低于分鐘的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里有1個(gè)紅球和n個(gè)白球,它們除顏色外其余都相同.

1)從這個(gè)袋子里摸出一個(gè)球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實(shí)驗(yàn),經(jīng)過大量實(shí)驗(yàn)后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于左右,求n的值;

2)在(1)的條件下,先從這個(gè)袋中摸出一個(gè)球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個(gè)球,記錄其顏色.請(qǐng)用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個(gè)球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如果四邊形ABCD中,ADBC6,點(diǎn)E、F、G分別是AB、BD、AC的中點(diǎn),那么△EGF面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機(jī)對(duì)部分游客進(jìn)行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表.

滿意度

人數(shù)

所占百分比

非常滿意

12

10%

滿意

54

m

比較滿意

n

40%

不滿意

6

5%

根據(jù)圖表信息,解答下列問題:

(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)據(jù)統(tǒng)計(jì),該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對(duì)景區(qū)服務(wù)工作的肯定,請(qǐng)你估計(jì)該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)AB分別在x軸負(fù)半軸,y軸負(fù)半軸上,ADy軸于點(diǎn)F,ECD的中點(diǎn).若OB1BD2EF時(shí),反比例函數(shù)y的圖象經(jīng)過D,E兩點(diǎn),則k的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案