【題目】甲、乙兩個(gè)芭蕾舞團(tuán)演員的身高(單位:cm)如下表:

兩組芭蕾舞團(tuán)演員身高的方差較小的是______.(填“甲”或“乙”)

【答案】

【解析】

先算出兩組數(shù)據(jù)的平均數(shù),再計(jì)算兩組數(shù)據(jù)的方差.

解:甲組演員身高的平均數(shù)為:164×2165×2166×2167×2)=165.5

乙組演員身高的平均數(shù)為:163×2165×2166×2168×2)=165.5,

S2=[164165.52+(164165.52+(165165.52+(165165.52+(166165.52+(166165.52+(167165.52+(167165.52]

2.252.250.250.250.250.252.252.25

1.25;

S2[163165.52+(163165.52+(165165.52+(165165.52+(166165.52+(166165.52+(168165.52+(168165.52]

186.256.250.250.250.250.256.256.25

3.25

∴甲組芭蕾舞團(tuán)演員身高的方差較小,

故答案為:甲.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)軸正半軸上一點(diǎn),且的面積是,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,C為⊙O上一點(diǎn),OC=4,∠OAC=60°

()如圖①,過(guò)點(diǎn)C作⊙O的切線,與BA的延長(zhǎng)線交于點(diǎn)P,求∠P的大;

()如圖②,PAB上一點(diǎn),CP延長(zhǎng)線與⊙O交于點(diǎn)Q.若AQ=CQ,求∠APC的大小及PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組為了解本校七年級(jí)女生的身高情況,統(tǒng)計(jì)了甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.(身高單位:)


請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)兩個(gè)班共有女生    人;

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);

4)該校七年級(jí)共有女生人,請(qǐng)估計(jì)身高在范圍的女生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)120°,連接,連接并延長(zhǎng),分別交于點(diǎn)

1)求證:;

2)已知,若的最小值為,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線x軸交于點(diǎn)C

1)求點(diǎn)B的坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為G

①當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點(diǎn)的個(gè)數(shù);

②若區(qū)域G內(nèi)恰有2個(gè)整點(diǎn),直接寫(xiě)出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年初,新冠肺炎肆虐全球.我國(guó)政府和人民采取了積極有效的防疫措施,疫情在我國(guó)得到了有效控制.小明為復(fù)學(xué)到藥店購(gòu)買口罩和一次性醫(yī)用口罩.已知購(gòu)買個(gè)口罩和個(gè)一次性醫(yī)用口罩共需元;購(gòu)買個(gè)口罩和個(gè)一次性醫(yī)用罩共需元.

1)求口罩與一次性醫(yī)用口罩的單價(jià);

2)小明準(zhǔn)備購(gòu)買口罩和一次性醫(yī)用口罩共個(gè),且口罩的數(shù)量不少于一次性醫(yī)用口罩?jǐn)?shù)量的.請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與AB重合),分別以ACBC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AEBD交于點(diǎn)P

(觀察猜想)

AEBD的數(shù)量關(guān)系是   ;

②∠APD的度數(shù)為   

(數(shù)學(xué)思考)

如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①、②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;

(拓展應(yīng)用)

如圖3,點(diǎn)E為四邊形ABCD內(nèi)一點(diǎn),且滿足∠AED=∠BEC90°,AEDE,BECE,對(duì)角線ACBD交于點(diǎn)P,AC10,則四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn). 分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OGOE為鄰邊作正方形OEFG,連接AGDE

(1)求證:DEAG;

(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形,如圖2.

①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠是直角時(shí),求的度數(shù);(注明:當(dāng)直角邊為斜邊一半時(shí),這條直角邊所對(duì)的銳角為30度)

②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求長(zhǎng)的最大值和此時(shí)的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.

圖1 圖2

查看答案和解析>>

同步練習(xí)冊(cè)答案