【題目】已知關(guān)于的方程有兩個(gè)正整數(shù)根(是正整數(shù)).的三邊、、滿足,,.
求:
的值;
的面積.
【答案】(1);(2)或.
【解析】
(1)已知關(guān)于的方程有兩個(gè)正整數(shù)根(是整數(shù)),由此即可得,設(shè),是此方程的兩個(gè)根,根據(jù)根與系數(shù)的關(guān)系可得,因?yàn)?/span>也是正整數(shù),即可得或或或或或,再由為正整數(shù),即可得;(2)由(1)得出的m的值,然后將,進(jìn)行化簡(jiǎn),得出a,b的值.然后再根據(jù)三角形三邊的關(guān)系來(lái)確定符合條件的a,b的值,進(jìn)而得出三角形的面積.
∵關(guān)于的方程有兩個(gè)正整數(shù)根(是整數(shù)).
∵,,,
∴,
設(shè),是此方程的兩個(gè)根,
∴,
∴也是正整數(shù),即或或或或或,
又為正整數(shù),
∴;
把代入兩等式,化簡(jiǎn)得,
當(dāng)時(shí),
當(dāng)時(shí),、是方程的兩根,而,由韋達(dá)定理得,,則、.
①,時(shí),由于
故為直角三角形,且,.
②,時(shí),因,故不能構(gòu)成三角形,不合題意,舍去.
③,時(shí),因,故能構(gòu)成三角形.
綜上,的面積為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),與坐標(biāo)原點(diǎn)O在同一直線上,且AO=BO,其中m,n滿足.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖1,若點(diǎn)M,P分別是x軸正半軸和y軸正半軸上的點(diǎn),點(diǎn)P的縱坐標(biāo)不等于2,點(diǎn)N在第一象限內(nèi),且,PA⊥PN,,求證:BM⊥MN;
(3)如圖2,作AC⊥y軸于點(diǎn)C,AD⊥x軸于點(diǎn)D,在CA延長(zhǎng)線上取一點(diǎn)E,使,連結(jié)BE交AD于點(diǎn)F,恰好有,點(diǎn)G是CB上一點(diǎn),且,連結(jié)FG,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達(dá)式.
(2)當(dāng)氣體體積為1 m3時(shí),氣壓是多少?
(3)當(dāng)氣球內(nèi)的氣壓大于140 kPa時(shí),氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)A(1,1),B(3,1),C(3,2),反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與AB相交于點(diǎn)E,
(1)求反比例函數(shù)的解析式;
(2)過(guò)點(diǎn)C、E作直線,求直線CE的解析式;
(3)如圖2,將矩形ABCD沿直線CE平移,使得點(diǎn)C與點(diǎn)E重合,求線段BD掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象如圖所示,對(duì)稱軸為,給出下列結(jié)論:①;②;③;④,其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的高線,BD=CD,點(diǎn)E是AD上一點(diǎn),BE=BC,將△ABE沿BE所在直線折疊,點(diǎn)A落在點(diǎn)A′位置上,連接AA',BA′,EA′與AC相交于點(diǎn)H,BA′與AC相交于點(diǎn)F.小夏依據(jù)上述條件,寫出下列四個(gè)結(jié)論:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°.以上結(jié)論中,正確的是( )
A.①B.③④C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問(wèn):
(1)經(jīng)過(guò)多少時(shí)間,的面積等于矩形面積的?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫出△A2B2C2;
(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com