【題目】如圖,對(duì)稱軸為x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0).
(1)求點(diǎn)B的坐標(biāo).
(2)已知a=1,C為拋物線與y軸的交點(diǎn).
①若點(diǎn)P在拋物線上,且S△POC=4S△BOC , 求點(diǎn)P的坐標(biāo).
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.
【答案】
(1)解:∵對(duì)稱軸為直線x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A、B兩點(diǎn),
∴A、B兩點(diǎn)關(guān)于直線x=﹣1對(duì)稱,
∵點(diǎn)A的坐標(biāo)為(﹣3,0),
∴點(diǎn)B的坐標(biāo)為(1,0);
(2)解:
①a=1時(shí),∵拋物線y=x2+bx+c的對(duì)稱軸為直線x=﹣1,
∴ =﹣1,解得b=2.
將B(1,0)代入y=x2+2x+c,
得1+2+c=0,解得c=﹣3.
則二次函數(shù)的解析式為y=x2+2x﹣3,
∴拋物線與y軸的交點(diǎn)C的坐標(biāo)為(0,﹣3),OC=3.
設(shè)P點(diǎn)坐標(biāo)為(x,x2+2x﹣3),
∵S△POC=4S△BOC,
∴ ×3×|x|=4× ×3×1,
∴|x|=4,x=±4.
當(dāng)x=4時(shí),x2+2x﹣3=16+8﹣3=21;
當(dāng)x=﹣4時(shí),x2+2x﹣3=16﹣8﹣3=5.
∴點(diǎn)P的坐標(biāo)為(4,21)或(﹣4,5);
②設(shè)直線AC的解析式為y=kx+t (k≠0)將A(﹣3,0),C(0,﹣3)代入,
得 ,解得 ,
即直線AC的解析式為y=﹣x﹣3.
設(shè)Q點(diǎn)坐標(biāo)為(x,﹣x﹣3)(﹣3≤x≤0),則D點(diǎn)坐標(biāo)為(x,x2+2x﹣3),
QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+ )2+ ,
∴當(dāng)x=﹣ 時(shí),QD有最大值 .
【解析】(1)由已知可知A、B兩點(diǎn)關(guān)于直線x=﹣1對(duì)稱,即可求得點(diǎn)B的坐標(biāo)。
(2)①根據(jù)已知,利用待定系數(shù)法求出函數(shù)解析式,由y=0求出點(diǎn)C的坐標(biāo),由點(diǎn)B、點(diǎn)C的坐標(biāo)求出△OBC的面積,然后設(shè)P點(diǎn)坐標(biāo)為(x,x2+2x﹣3),根據(jù)S△POC=4S△BOC,建立方程求解,即可得出點(diǎn)P的坐標(biāo);②根據(jù)點(diǎn)A、C的坐標(biāo)求出直線AC的解析式,由于Q是線段AC上的動(dòng)點(diǎn),QD⊥x軸交拋物線于點(diǎn)D,得出點(diǎn)Q和點(diǎn)D的橫坐標(biāo)相等為x,即可分別表示出它們的縱坐標(biāo),再建立QD關(guān)于x的函數(shù)解析式,求出頂點(diǎn)坐標(biāo),即可求得線段QD長度的最大值。
【考點(diǎn)精析】掌握確定一次函數(shù)的表達(dá)式和二次函數(shù)的最值是解答本題的根本,需要知道確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長度相同,且斜邊BC與BE在同一直線上,AC與BD交于點(diǎn)O,連接CD.
求證:△CDO是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,BE平分∠ABC.
(1)若∠EBC=32°,∠1∶∠2=1∶2,EF∥AD,求∠FEC的度數(shù).
(2)若∠2=50°,點(diǎn)F為射線CB上的一個(gè)動(dòng)點(diǎn),當(dāng)△EFC為鈍角三角形時(shí),直接寫出∠FEC的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.
若該工廠準(zhǔn)備用不超過10000元的資金去購買A,B兩種型號(hào)板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?
若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?
若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計(jì)損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個(gè)三角形數(shù)記為,第二個(gè)三角形數(shù)記為,…第n個(gè)三角形數(shù)記為,其中,,,…,則=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,BC= .以BC的中點(diǎn)O為圓心的圓分別與AB、AC相切于D、E兩點(diǎn),則 的長為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC與△AEG面積之間的關(guān)系,并說明理由。
(2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com