【題目】如圖,在菱形ABCD中,∠A=70,E,F分別是邊AB和BC的中點(diǎn),EP⊥CD于P,則∠FPC的度數(shù)為___________.
【答案】35°
【解析】
根據(jù)菱形的鄰角互補(bǔ)求出∠B,再求出BE=BF,然后根據(jù)等腰三角形兩底角相等求出∠BEF,再求出∠FEP,取AD的中點(diǎn)G,連接FG交EP于O,然后判斷出FG垂直平分EP,再根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得EF=FP,利用等邊對(duì)等角求出∠FPE,再根據(jù)∠FPC=90°-∠FPE代入數(shù)據(jù)計(jì)算即可得解.
在菱形ABCD中,連接EF,如圖,
∵∠A=70°,
∴∠B=180°-870°=110°,
∵E,F分別是邊AB,BC的中點(diǎn),
∴BE=BF,
∴∠BEF=(180°-∠B)=(180°-110°)=35°,
∵EP⊥CD,AB∥CD,
∴∠BEP=∠CPE=90°,
∴∠FEP=90°-35°=55°,
取AD的中點(diǎn)G,連接FG交EP于O,
∵點(diǎn)F是BC的中點(diǎn),G為AD的中點(diǎn),
∴FG∥DC,
∵EP⊥CD,
∴FG垂直平分EP,
∴EF=PF,
∴∠FPE=∠FEP=55°,
∴∠FPC=90°-∠FPE=90°-55°=35°.
故答案為:35°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖兩張長(zhǎng)相等,寬分別是1和3的矩形紙片上疊合在一起,重疊部分為四邊形ABCD,且AB+BC=6,則四面行ABCD的面積為( )
A. 3B. C. 9D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于點(diǎn)D,F(xiàn)是BE上一點(diǎn),AF⊥AE,且C是線段AF的垂直平分線上的點(diǎn),AF=2,則DF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不能判定四邊形ABCD為平行四邊形的題設(shè)是( )
A. AB=CD,AD∥BCB. ABCDC. AB=CD,AD=BCD. AB∥CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,直線y=-x+6與x軸、y軸分別交于A、B兩點(diǎn)、
直線y=ax+a經(jīng)過(guò)點(diǎn)B交x軸于點(diǎn)C.
(1)求AC長(zhǎng);
(2)點(diǎn)D為線段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)D作x軸平行線分別交OB、AB于點(diǎn)E、F,點(diǎn)G為AF中點(diǎn),直線EG交x軸于H,設(shè)點(diǎn)D的橫坐標(biāo)為t,線段AH長(zhǎng)為d(d≠0),求d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)K為線段OA上一點(diǎn),連接EK,過(guò)F作FM⊥EK,直線FM交x軸于點(diǎn)M,當(dāng)KH=2CO,點(diǎn)0到直線FM的距離為時(shí),求點(diǎn)D的坐標(biāo)。
備用圖 備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,小麗一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游.現(xiàn)有甲、乙兩家租車公司,租車費(fèi)用如下:甲公司按日收取固定租金80元,另外再按租車時(shí)間計(jì)費(fèi);乙公司無(wú)固定租金,直接按租車時(shí)間計(jì)費(fèi),每小時(shí)租費(fèi)是30元.
(1)設(shè)租用時(shí)間為x小時(shí),租用甲公司的車所需費(fèi)用為y1元,租用乙公司的車所需費(fèi)用為y2元,其圖象如圖所示,分別求出y1, y2關(guān)于x的函數(shù)解析式;
(2)請(qǐng)你幫助小麗計(jì)算,租用哪家新能源汽車自駕出游更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九宮格是一款數(shù)學(xué)游戲,起源于河圖洛書,河圖與洛書是我國(guó)古代流傳下來(lái)的兩幅神秘圖案,歷來(lái)被認(rèn)為是河洛文化的濫觴,中華文明的源頭.在如圖所示的九宮格中,其每行、每列、每條對(duì)角線上三個(gè)數(shù)字之和都相等,則對(duì)于這個(gè)九宮格,下列說(shuō)法錯(cuò)誤的是( )
A.每條對(duì)角線上三個(gè)數(shù)學(xué)之和等于B.三個(gè)空白方格中的數(shù)字之和等于
C.是這九個(gè)數(shù)字中最小的數(shù)D.這九個(gè)數(shù)學(xué)之和等于
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE,
填空:①∠AEB的度數(shù)為 ;
②線段AD、BE之間的數(shù)量關(guān)系是 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請(qǐng)判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題如圖3,在正方形ABCD中,CD=.若點(diǎn)P滿足PD=1,且∠BPD=900,請(qǐng)直接寫出點(diǎn)A到BP的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)不透明的袋子分別裝有紅、白兩種顏色的球(除顏色不同外其余均相同),甲袋中有2個(gè)紅球和1個(gè)白球,乙袋中有1個(gè)紅球和3個(gè)白球.
(1)如果在甲袋中隨機(jī)摸出一個(gè)小球,那么摸到紅球的概率是______.
(2)如果在乙袋中隨機(jī)摸出兩個(gè)小球,那么摸到兩球顏色相同的概率是______.
(3)如果在甲、乙兩個(gè)袋子中分別隨機(jī)摸出一個(gè)小球,那么摸到兩球顏色相同的概率是多少?(請(qǐng)用列表法或樹狀圖法說(shuō)明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com