如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).
(1)y=﹣x2+x+2(2)當(dāng)t=2時(shí),MN有最大值4(3)D點(diǎn)坐標(biāo)為(0,6),(0,﹣2)或(4,4)
解:(1)∵分別交y軸、x軸于A、B兩點(diǎn),
∴A、B點(diǎn)的坐標(biāo)為:A(0,2),B(4,0)。
將x=0,y=2代入y=﹣x2+bx+c得c=2;
將x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=。
∴拋物線解析式為:y=﹣x2+x+2。
(2)如圖1,

設(shè)MN交x軸于點(diǎn)E,則E(t,0),BE=4﹣t。
,
∴ME=BE•tan∠ABO=(4﹣t)× =2﹣t。
又∵N點(diǎn)在拋物線上,且xN=t,∴yN=﹣t2+t+2。
。
∴當(dāng)t=2時(shí),MN有最大值4。
(3)由(2)可知,A(0,2),M(2,1),N(2,5).
如圖2,

以A、M、N、D為頂點(diǎn)作平行四邊形,D點(diǎn)的可能位置有三種情形。
(i)當(dāng)D在y軸上時(shí),設(shè)D的坐標(biāo)為(0,a),
由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,
從而D為(0,6)或D(0,﹣2)。
(ii)當(dāng)D不在y軸上時(shí),由圖可知D為D1N與D2M的交點(diǎn),
由D1(0,6),N(2,5)易得D1N的方程為y=x+6;
由D2(0,﹣2),M(2,1)D2M的方程為y=x﹣2。
由兩方程聯(lián)立解得D為(4,4)。
綜上所述,所求的D點(diǎn)坐標(biāo)為(0,6),(0,﹣2)或(4,4)。
(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求拋物線的解析式。
(2)求得線段MN的表達(dá)式,這個(gè)表達(dá)式是關(guān)于t的二次函數(shù),利用二次函數(shù)的極值求線段MN的最大值。
(3)明確D點(diǎn)的可能位置有三種情形,如圖2所示,不要遺漏.其中D1、D2在y軸上,利用線段數(shù)量關(guān)系容易求得坐標(biāo);D3點(diǎn)在第一象限,是直線D1N和D2M的交點(diǎn),利用直線解析式求得交點(diǎn)坐標(biāo)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=x2+x-
(1)求它的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)若該拋物線與x軸的兩個(gè)交點(diǎn)為A、B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB交x軸于點(diǎn)B(4,0),交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°.

(1)直接寫(xiě)出直線AB的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是線段MB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交AB于點(diǎn)F,交過(guò)O、D、B三點(diǎn)的拋物線于點(diǎn)E,連接CE.是否存在點(diǎn)P,使△BPF與△FCE相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

巴南區(qū)為了貫徹落實(shí)“森林重慶”,深入開(kāi)展“綠化長(zhǎng)江—重慶行動(dòng)”,F(xiàn)決定對(duì)本區(qū)培育種植樹(shù)苗的農(nóng)民實(shí)施政府補(bǔ)貼,規(guī)定每種植一畝樹(shù)苗一次性補(bǔ)貼農(nóng)民若干元,隨著補(bǔ)貼數(shù)額的不斷增大,生產(chǎn)規(guī)模也不斷增加,但每畝樹(shù)苗的收益會(huì)相應(yīng)降低。經(jīng)調(diào)查,種植畝數(shù)y(畝)、每畝樹(shù)苗的收益z(元)與補(bǔ)貼樹(shù)額x(元)之間的一次函數(shù)關(guān)系如下表:

(1)分別求出政府補(bǔ)貼政策實(shí)施后種植畝數(shù)y、每畝樹(shù)苗的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(2)要使我區(qū)種植樹(shù)苗的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值和此時(shí)種植的畝數(shù);(總收益=種植畝數(shù)每畝樹(shù)苗的收益)
(3)在取得最大收益的情況下,經(jīng)市場(chǎng)調(diào)查,培育種植水果類樹(shù)苗經(jīng)濟(jì)效益更好,今年該地區(qū)決定用種植樹(shù)苗總面積m﹪的土地種植水果類樹(shù)苗,因環(huán)境和經(jīng)濟(jì)等因素的制約,種植水果類樹(shù)苗的面積不超過(guò)300畝 .經(jīng)測(cè)算,種植水果類樹(shù)苗需用的支架、塑料膜等材料每畝費(fèi)用為2700元,此外還需購(gòu)置噴灌設(shè)備,這項(xiàng)費(fèi)用(元)與種植水果類樹(shù)苗面積(畝)的平方成正比例,比例系數(shù)為9.預(yù)計(jì)今年種植水果類樹(shù)苗后的這部分土地的收益比沒(méi)種植前的收益每畝增加了7500元,這樣,該地區(qū)今年因種植水果類樹(shù)苗而增加的收益(扣除材料費(fèi)和設(shè)備費(fèi)后)共570000元.求m的值.
(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),且A點(diǎn)坐標(biāo)為(4,0),B的坐標(biāo)為(m,),點(diǎn)C是拋物線在第三象限的一點(diǎn),且橫坐標(biāo)為-2.

(1)求拋物線的解析式和直線BC的解析式。
(2)直線BC與 x軸相交于點(diǎn)D,求△OBC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖二次函數(shù)的圖象經(jīng)過(guò)兩點(diǎn),且交軸于點(diǎn)
(1)試確定、的值;
(2)過(guò)點(diǎn)軸交拋物線于點(diǎn)點(diǎn)為此拋物線的頂點(diǎn),試確定的形狀.
參考公式:頂點(diǎn)坐標(biāo) 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是 _  __   __

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

根據(jù)下列表格中的對(duì)應(yīng)值得到二次函數(shù)(a≠0)于x軸有一個(gè)交點(diǎn)的橫坐標(biāo)x的范圍是(    )                                   
x
3.23
3.24
3.25
3.26
y
﹣0.06
﹣0.02
0.03
0.09
 
A.x<3.23                  B.3.23<x<3.24
C.3.24<x<3.25            D.3.25<x<3.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)不屬于二次函數(shù)的是(   )
A.y=(x-1)(x+2)B.y=(x+1)2
C.y=1-x2D.y=2(x+3)2-2x2

查看答案和解析>>

同步練習(xí)冊(cè)答案