【題目】上海市為了增強(qiáng)居民的節(jié)水意識(shí),避免水資源的浪費(fèi),全面實(shí)施居民階梯水價(jià).當(dāng)累計(jì)水量達(dá)到年度階梯水量分檔基數(shù)臨界點(diǎn)后,即開始實(shí)施階梯價(jià)格計(jì)價(jià),分檔水量和價(jià)格見下表.

分檔

戶年用水量

(立方米)

自來水價(jià)格

(元/立方米)

污水處理費(fèi)

(元/立方米)

第一階梯

0-220(含220

1.92

1.70

第二階梯

220-300(含300

3.30

1.70

第三階梯

300以上

4.30

1.70

注:1.應(yīng)繳納水費(fèi) = 自來水費(fèi)總額 + 污水處理費(fèi)總額

2.應(yīng)繳納污水處理費(fèi)總額 = 用水量×污水處理費(fèi)× 0.9

仔細(xì)閱讀上述材料,請(qǐng)解答下面的問題,并把答案寫在答題紙上:

1)小靜家2019年上半年共計(jì)用水量100立方米,應(yīng)繳納水費(fèi) 元;

2)小靜家全年繳納的水費(fèi)共計(jì)1000.5元,那么2019年全年用水量為 立方米;

3)如圖所示是上海市階梯水價(jià)y與用水量x的函數(shù)關(guān)系,那么第二階梯(線段AB)的函數(shù)解析式為 ,定義域

【答案】1345; 2270;(3

【解析】

1)用水量100立方米處于第一階梯,直接利用應(yīng)繳納水費(fèi) = 自來水費(fèi)總額 + 污水處理費(fèi)總額計(jì)算即可;

2)先判斷出用水量處于第幾階梯,然后設(shè)2019年全年用水量為x立方米,列出方程求解即可;

3)先求出用水量220立方米時(shí)的水費(fèi),然后利用待定系數(shù)法求解析式即可,定義域根據(jù)圖象直接可得.

1(元)

∴用水量100立方米應(yīng)繳納水費(fèi)345元;

2)當(dāng)用水量為220立方米時(shí),應(yīng)繳水費(fèi)為(元)

當(dāng)用水量為300立方米時(shí),應(yīng)繳水費(fèi)為(元)

∴全年繳納的水費(fèi)共計(jì)1000.5元,說明用水量處于第二階梯,

設(shè)2019年全年用水量為x立方米,根據(jù)題意得

解得

2019年全年用水量為270立方米;

3)由(2)可知,當(dāng) 時(shí),,

設(shè)線段AB的解析式為

代入解析式中得

解得

∴線段AB的解析式為

定義域?yàn)?/span>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次大課間活動(dòng)中,采用了四種活動(dòng)形式:A:跑步;B:跳繩;C:做操;D:游戲,全校學(xué)生都選擇了一種形式參與活動(dòng),小明對(duì)同學(xué)們選擇的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了不完整的兩幅統(tǒng)計(jì)圖(如圖):

1)本次共調(diào)查了多少名學(xué)生?

2)跳繩B對(duì)應(yīng)扇形的圓心角為多少度?

3)學(xué)校在每班A、B、CD四種活動(dòng)形式中,隨機(jī)抽取兩種開展活動(dòng),求每班抽取的兩種形式恰好是做操跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將大小兩把含30°角的直角三角尺按如圖1 位置擺放,即大小直角三角尺的直角頂點(diǎn)C 重合,小三角尺的頂點(diǎn) D、E 分別在大三角尺的直角邊 AC、BC 上,此時(shí)小三角尺的斜邊 DE 恰好經(jīng)過大三角尺的重心G .已知A CDE 30°, AB 12 .

(1)求小三角尺的直角邊CD 的長;

(2)將小三角尺繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D第一次落在大三角尺的邊 AB 上時(shí)(如圖2),求點(diǎn) B 、 E 之間的距離;

(3)在小三角尺繞點(diǎn)C 旋轉(zhuǎn)的過程中,當(dāng)直線 DE 經(jīng)過點(diǎn) A 時(shí),求BAE 的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是正方形,點(diǎn)P在直線BC上,點(diǎn)G在直線AD上(P,G不與正方形頂點(diǎn)重合,且在CD的同側(cè)),PD=PG,DFPG于點(diǎn)H,交直線AB于點(diǎn)F,將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF

1)如圖1,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD上時(shí).

①求證:DF=PG;

②若AB=3,PC=1,求四邊形PEFD 的面積;

2)如圖2,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD的延長線上時(shí),請(qǐng)猜想四邊形PEFD 是怎樣的特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+b與雙曲線交于A,B兩點(diǎn).P是線段AB上一點(diǎn)(不與點(diǎn)A,點(diǎn)B重合),過點(diǎn)P作平行于x軸的直線交雙曲線于點(diǎn)M,過點(diǎn)P作平行于y軸的直線交雙曲線于點(diǎn)N

1)當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),求b的值:

2)在(1)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為m

①若m=-1,判斷PMPN的數(shù)量關(guān)系,并說明理由;

②若PMPN,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60 n mile的小島A出發(fā),沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東45°方向上的B處,這時(shí)輪船B與小島A的距離是( )

A. n mileB.60 n mileC.120 n mileD.n mile

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°

1)求∠ACB的度數(shù);

2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈cos37°≈,tan37°≈sin48°≈cos48°≈,tan48°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+mx的圖象如圖,對(duì)稱軸為直線x=2,若關(guān)于x的一元二次方程﹣x2+mxt=0t為實(shí)數(shù))在1x5的范圍內(nèi)有解,則t的取值范圍是(

A.t>﹣5B.5t3C.3t≤4D.5t≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),且與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn),作軸于點(diǎn),

1)求直線的函數(shù)解析式;

2)設(shè)點(diǎn)軸上的點(diǎn),若的面積等于6,直接寫出點(diǎn)的坐標(biāo);

3)設(shè)點(diǎn)是軸上的點(diǎn),且為等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案