【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點(diǎn) O以 3°/秒的速度逆時(shí)針旋轉(zhuǎn) t 秒時(shí),當(dāng)∠AOM:∠DON=3:4 時(shí),則 t=____________

【答案】

【解析】

由題意得∠AOM=(10°+3t+20°),∠DON=(150°-10°-3t),由此列出方程求解即可.

解:∵射線OBOA逆時(shí)針以3°每秒的旋轉(zhuǎn)t秒,∠BOC=20°,
∴∠AOC=∠AOB+∠COB=3t°+10°+20°=3t°+30°.
∵射線OM平分∠AOC,
∴∠AOM=∠AOC=(3t°+30°).
∵∠BOD=∠AOD-∠BOA,∠AOD=150°,
∴∠BOD=140°-3t.
∵射線ON平分∠BOD,
∴∠DON=∠BOD=(140°-3t).
又∵∠AOM:∠DON=3:4,
(3t°+30°):(140°-3t)=3:4,
解得t=
故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E、F分別為線段AC上兩個(gè)動(dòng)點(diǎn),且DEACE,BFACF,若AB=CD,AF=CE,BDACM.說(shuō)明:MB=MD,ME=MF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )
A.一個(gè)游戲的中獎(jiǎng)概率是 ,則做10次這樣的游戲一定會(huì)中獎(jiǎng)
B.一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
C.為了解全國(guó)中學(xué)生的心理健康情況,應(yīng)該采用普查的方式
D.若甲組數(shù)據(jù)的方差S2=0.01,乙組數(shù)據(jù)的方差S2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買(mǎi)一批足球,已知購(gòu)買(mǎi)2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買(mǎi)4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價(jià).
(2)求該校購(gòu)買(mǎi)20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C(0,5).

(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)D是笫一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連結(jié)BD、CD.設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.
①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍;
②當(dāng)m為何值時(shí),S有最大值,并求這個(gè)最大值;
③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請(qǐng)求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,ADBC,點(diǎn)EAC的垂直平分線上,BD=DE.

(1)如果ABC的周長(zhǎng)為14cm,AC=6cm,那么ABE的周長(zhǎng)=____;

(2)你發(fā)現(xiàn)線段ABBD的和等于圖中哪條線段的長(zhǎng)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點(diǎn),連接AE、BE,BEAE,延長(zhǎng)AEBC的延長(zhǎng)線于點(diǎn)F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班學(xué)生在頒獎(jiǎng)大會(huì)上得知該班獲得獎(jiǎng)勵(lì)的情況如下表:

已知該班共有27人獲得獎(jiǎng)勵(lì)(每位同學(xué)均可獲得不同級(jí)別、不同類(lèi)別多項(xiàng)獎(jiǎng)勵(lì)),其中只獲得兩項(xiàng)獎(jiǎng)勵(lì)的有13人,那么該班獲得獎(jiǎng)勵(lì)最多的一位同學(xué)可能獲得的獎(jiǎng)勵(lì)為(

A. 3項(xiàng) B. 4項(xiàng) C. 5項(xiàng) D. 6項(xiàng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D是線段AB上兩點(diǎn),已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點(diǎn),且AB=12cm,

(1)求線段CD的長(zhǎng);

(2)求線段MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案