【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你利用上述方法求出△ABC的面積.
(2)在圖2中畫△DEF,DE、EF、DF三邊的長分別為、、
①判斷三角形的形狀,說明理由.
②求這個三角形的面積.(直接寫出答案)
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。
(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當x=0時,y=﹣5;當x=2時,y=﹣7.
(1)求y與x的函數(shù)關(guān)系式;
(2)當y=5時,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次“尋寶”游戲中,已知尋寶圖上兩標志點A和點B的坐標分別為(-3,0),(5,0),“寶藏”分別埋在C(3,4)和D(-2,3)兩點.
(1)請建立平面直角坐標系,并確定“寶藏”的位置;
(2)計算四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點A的坐標,與y軸交點B的坐標;
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用我們學過的知識,可以導出下面這個形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔美.
(1)請你檢驗這個等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人們在長期的數(shù)學實踐中總結(jié)了許多解決數(shù)學問題的方法,形成了許多光輝的數(shù)學想法,其中轉(zhuǎn)化思想是中學教學中最活躍,最實用,也是最重要的數(shù)學思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法。
問題提出:求邊長分別為的三角形面積。
問題解決:在解答這個問題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為的格點三角形△ABC(如圖①),AB=是直角邊為1和2的直角三角形斜邊,BC=是直角邊分別為1和3的直角三角形的斜邊,AC=是直角邊分別為2和3 的直角三角形斜邊,用一個大長方形的面積減去三個直角三角形的面積,這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積。
(1)請直接寫出圖①中△ABC的面積為_______________ 。
(2)類比遷移:求邊長分別為的三角形面積(請利用圖②的正方形網(wǎng)格畫出相應的△ABC,并求出它的面積)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),∠AOB=45°,點P、Q分別是邊OA,OB上的兩點,且OP=2cm.將∠O沿PQ折疊,點O落在平面內(nèi)點C處.
(1)①當PC∥QB時,OQ= ;
②當PC⊥QB時,求OQ的長.
(2)當折疊后重疊部分為等腰三角形時,求OQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com