如圖,A,B,C三點(diǎn)在同一條直線上,∠A=∠C=90°,AB=CD,請(qǐng)?zhí)砑右粋(gè)適當(dāng)?shù)臈l件   ,使得△EAB≌△BCD.
AE=CB(答案不唯一)

試題分析:∵∠A=∠C=90°,AB=CD,
∴若添加AE=CB可由“SAS”證得△EAB≌△BCD,
若添加EB=BD可由“HL” 證得△EAB≌△BCD,
若添加∠EBD=90°可由“ASA”或“AAB” 證得△EAB≌△BCD,
若添加∠E=∠DBC,可由“ASA”“AAS”證得△EAB≌△BCD。
等,答案不唯一。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等腰三角形ABC中,∠ACB=90°,點(diǎn)E在AC邊的延長(zhǎng)線上,且∠DEC=45°,點(diǎn)M、N分別是DE、AE的中點(diǎn),連接MN交直線BE于點(diǎn)F.當(dāng)點(diǎn)D在CB邊上時(shí),如圖1所示,易證MF+FN=BE

(1)當(dāng)點(diǎn)D在CB邊上時(shí),如圖2所示,上述結(jié)論是否成立?若成立,請(qǐng)給與證明;若不成立,請(qǐng)寫出你的猜想,并說(shuō)明理由.
(2)當(dāng)點(diǎn)D在BC邊的延長(zhǎng)線上時(shí),如圖3所示,請(qǐng)直接寫出你的結(jié)論.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,且AB=5,△OCD的周長(zhǎng)為23,則平行四邊形ABCD的兩條對(duì)角線的和是
A.18B.28C.36D.46

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013年四川眉山3分)一個(gè)正多邊形的每個(gè)外角都是36°,這個(gè)正多邊形的邊數(shù)是【   】
A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,則BD的長(zhǎng)為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中,D,E分別為AB,AC的中點(diǎn),∠B=70°,則∠ADE=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,則∠AOQ=    °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,∠ACB=90°,∠B=30°,AD是角平分線,DE⊥AB于E,AD、CE相交于點(diǎn)H,則圖中的等腰三角形有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:AB⊥AE;
(2)若BC2=AD•AB,求證:四邊形ADCE為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案