【題目】如圖,小明想測量電線桿AB的高度,但在太陽光下,電線桿的影子恰好落在地面和土地的坡面上,量得坡面上的影長CD=4m,地面上的影長BC=10m,土坡坡面與地面成30°的角,此時測得1m長的木桿的影長為2m,求電線桿的高度.(結(jié)果精確到0.1m)
【答案】8.7m
【解析】
解:解法一:如圖,連接AD,過點D作DE⊥AB于點E,過點D作DF⊥BC交BC的延長線于點F,則得矩形BFDE,所以DF=BE,DE=BF.在Rt△DCF中,由CD=4m,∠DCF=30°,得DF=2m,m,所以m,BE=DF=2m.因為此時1m長的木桿的影長為2m,所以,即,解得m.
所以(m).
答:電線桿的高度約為8.7m.
解法二:如圖,連接AD并延長交BC的延長線于點M,過點D作DF⊥BM于點F.
在Rt△DCF中,由CD=4m,∠DCF=30°,得DF=2m,所以m.因為此時1m長的木桿的影長為2m.所以,所以FM=2DF=4m.又DF∥AB,所以,即,
解得(m).
答:電線桿的高度約為8.7m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽取了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中______,并補全條形圖;
(2)樣本數(shù)據(jù)的平均數(shù)是______,眾數(shù)是______,中位數(shù)是______;
(3)該區(qū)體育中考選報引體向上的男生共有1200人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點O為圓心,AD為弦作⊙O.
(1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。
(2)若AC=3,BC=4,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來.
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,OD⊥AB于點D,交⊙O于點E,∠C=60°,如果⊙O的半徑為2,則結(jié)論錯誤的是( 。
A.AD=DBB.C.OD=1D.AB=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)是( 。
A. 106°B. 108°C. 110°D. 112°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+a與x軸交于點A(4,0),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點A,B.點M(m,0)為x軸上一動點,過點M且垂直于x軸的直線分別交直線AB及拋物線于點P,N.
(1)填空:點B的坐標(biāo)為 ,拋物線的解析式為 ;
(2)當(dāng)點M在線段OA上運動時(不與點O,A重合),
①當(dāng)m為何值時,線段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時m的值;
(3)若拋物線上有且只有三個點N到直線AB的距離是h,請直接寫出此時由點O,B,N,P構(gòu)成的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點.求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點上.
(3)如圖3,在(1)的條件下,取EF中點M,連結(jié)DM并延長交AB于點Q,延長EF交AC于點N.若N為AC的中點,DE=2BE,QB=6,求鄰余線AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于、兩點(點在點的左側(cè)),與軸交于點,且.
(1)求該拋物線的函數(shù)表達式;
(2)動點在線段下方的拋物線上.
①連接、,過點作軸的垂線,垂足為,交于點.過點作,垂足為.設(shè)點的橫坐標(biāo)為,線段的長為,用含的代數(shù)式表示;
②過點作,垂足為,連接.是否存在點,使得中的一個角恰好等于的2倍?如果存在,求出點的橫坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com