【題目】完成以下證明,并在括號內(nèi)填寫理由. 已知:如圖所示,∠1=∠2,∠A=∠3.
求證:∠ABC+∠4+∠D=180°.
證明:∵∠1=∠2

∴∠A=∠4(
∠ABC+∠BCE=180°(
即∠ABC+∠ACB+∠4=180°
∵∠A=∠3
∴∠3=

∴∠ACB=∠D(
∴∠ABC+∠4+∠D=180°.

【答案】AB;CE;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;∠4;AC;DE;兩直線平行,同位角相等
【解析】證明:∵∠1=∠2, ∴AB∥CE(內(nèi)錯角相等,兩直線平行),
∴∠A=∠4(兩直線平行,內(nèi)錯角相等),
∠ABC+∠BCE=180°(兩直線平行,同旁內(nèi)角互補),
即∠ABC+∠ACB+∠4=180°,
∵∠A=∠3,
∴∠3=∠4,
∴AC∥DE
∴∠ACB=∠D(兩直線平行,同位角相等),
∴∠ABC+∠4+∠D=180°,
所以答案是:AB,CE,內(nèi)錯角相等,兩直線平行,兩直線平行,內(nèi)錯角相等,兩直線平行,同旁內(nèi)角互補,∠4,AC,DE,兩直線平行,同位角相等,
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x3y﹣xy3因式分解結(jié)果為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板拼成如圖所示的圖形,過點C作CF∥AB交DE于點F.
(1)求證:CF平分∠DCE;
(2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程3x﹣5+a=bx+1,問當a、b取何值時.

(1)方程有唯一解;(2)方程有無數(shù)解;(3)方程無解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖b的形狀,拼成一個正方形.
(1)圖b中的陰影部分面積為
(2)觀察圖b,請你寫出三個代數(shù)式(m+n)2 , (m﹣n)2 , mn之間的等量關(guān)系是;
(3)若x+y=﹣6,xy=2.75,利用(2)提供的等量關(guān)系計算x﹣y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉.小明在全校隨機抽取一部分同學(xué)就我最喜愛的體育項目進行了一次抽樣調(diào)查.下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

(1)小明共抽取________名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,立定跳遠部分對應(yīng)的圓心角的度數(shù)是_____.

(4)若全校共有2130名學(xué)生,請你估算其他部分的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校初四年紀學(xué)生每周平均課外閱讀時間的情況,隨機抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下條形統(tǒng)計圖(圖一)和扇形統(tǒng)計圖(圖二):

(1)根據(jù)以上信息回答下列問題:

①求m值.

②求扇形統(tǒng)計圖中閱讀時間為5小時的扇形圓心角的度數(shù).

③補全條形統(tǒng)計圖.

(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中:①若a=b,則 = ,②在同一平面內(nèi),若a⊥b,b∥c,則a⊥c;③直線外一點到直線的垂線段叫點到直線的距離;④| ﹣2|=2﹣ ,正確的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

同步練習(xí)冊答案