【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值

【答案】
(1)

解:把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得

,

解得

故該拋物線的解析式為:y=﹣x2﹣2x+3.


(2)

解:由(1)知,該拋物線的解析式為y=﹣x2﹣2x+3,則易得B(1,0).

∵SAOP=4SBOC,

×3×|﹣x2﹣2x+3|=4× ×1×3.

整理,得(x+1)2=0或x2+2x﹣7=0,

解得x=﹣1或x=﹣1±2

則符合條件的點(diǎn)P的坐標(biāo)為:(﹣1,4)或(﹣1+2 ,﹣4)或(﹣1﹣2 ,﹣4)


(3)

解:設(shè)直線AC的解析式為y=kx+t,將A(﹣3,0),C(0,3)代入,

解得

即直線AC的解析式為y=x+3.

設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),(﹣3≤x≤0),則D點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),

QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+ 2+ ,

∴當(dāng)x=﹣ 時(shí),QD有最大值


【解析】(1)把點(diǎn)A、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)的方程組,通過(guò)解方程組求得系數(shù)的值;(2)設(shè)P點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),根據(jù)SAOP=4SBOC列出關(guān)于x的方程,解方程求出x的值,進(jìn)而得到點(diǎn)P的坐標(biāo);(3)先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+3,再設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),則D點(diǎn)坐標(biāo)為(x,x2+2x﹣3),然后用含x的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質(zhì)即可求出線段QD長(zhǎng)度的最大值.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,觀測(cè)點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測(cè)得樓頂端B的仰角為22°,此時(shí)點(diǎn)E恰好在AB上,從點(diǎn)D處測(cè)得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過(guò)點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:

(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸是直線x=﹣1,下列結(jié)論:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程:
(1)x(x﹣3)+x﹣3=0
(2)x2﹣4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問(wèn)學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境:

請(qǐng)根據(jù)上面的信息,解決問(wèn)題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從長(zhǎng)度分別為2、3、6、7、9的5條線段中任取3條作為三角形的邊,能組成三角形的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正七邊形ABCDEFG,請(qǐng)僅用無(wú)刻度的直尺,分別按下列要求畫圖.
(1)在圖1中,畫出一個(gè)以AB為邊的平行四邊形;
(2)在圖2中,畫出一個(gè)以AF為邊的菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案