【題目】下列命題中,真命題是(

A. 兩條對(duì)角線互相平分的四邊形是平行四邊形

B. 兩條對(duì)角線互相垂直的四邊形是菱形

C. 兩條對(duì)角線互相垂直且相等的四邊形是正方形

D. 兩條對(duì)角線相等的四邊形是矩形

【答案】A

【解析】A兩條對(duì)角線互相平分的四邊形是平行四邊形故本選項(xiàng)正確.

B對(duì)角線互相垂直平分的四邊形是菱形;故本選項(xiàng)錯(cuò)誤.

C兩條對(duì)角線互相垂直相等且平分的四邊形是正方形.故本選項(xiàng)錯(cuò)誤.

D兩條對(duì)角線相等且平分的四邊形是矩形故本選項(xiàng)錯(cuò)誤.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B在線段AC上,且BC=2AB,D,E分別是AB,BC的中點(diǎn).則下列結(jié)論:①AB= AC;②B是AE的中點(diǎn);③EC=2BD;④DE=AB.其中正確的有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.

(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從如圖所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).

①當(dāng)t=時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;

②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.﹣2x2y3xy2=﹣6x2y2
B.(﹣x﹣2y)(x+2y)=x2﹣4y2
C.6x3y2÷2x2y=3xy
D.(4x3y22=16x9y4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題小組為了解某品牌電動(dòng)自行車的銷售情況,對(duì)某專賣店第一季度該品牌A、B、C、D四種型號(hào)電動(dòng)車的銷量做了統(tǒng)計(jì),繪制成如圖所示的兩幅統(tǒng)計(jì)圖(均不完整)
(1)該店第一季度售出這種品牌的電動(dòng)自行車共多少輛?
(2)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),4秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度.已知點(diǎn)B的速度是點(diǎn)A的速度的3倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒).
(1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)4秒時(shí)的位置;
(2)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),再過幾秒時(shí),原點(diǎn)恰好處在AB的中點(diǎn)?
(3)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從原點(diǎn)O位置出發(fā)向B點(diǎn)運(yùn)動(dòng),且C的速度是點(diǎn)A的速度的一半;當(dāng)點(diǎn)C運(yùn)動(dòng)幾秒時(shí),C為AB的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).

(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)

(2)若的中點(diǎn)C到弦AB的距離為20m,AB=80m,求所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀發(fā)現(xiàn):如圖①,在△ABC中,∠ACB=2∠B,∠ACB=90°,AD為∠BAC的平分線,且交BC于D,我們發(fā)現(xiàn)在AB上截取AE=AC,連結(jié)DE,可得AB=AC+CD(不需證明).
(1)探究:如圖②,當(dāng)∠ACB≠90°時(shí),其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,寫出結(jié)果,并證明;
(2)拓展:如圖③,當(dāng)∠ACB=2∠B,∠ACB≠90°時(shí),AD為△ABC的外角∠CAF的平分線,且交BC的延長(zhǎng)線于點(diǎn)D,則線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);

(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑等于

查看答案和解析>>

同步練習(xí)冊(cè)答案