問(wèn)題背景
【小題1】(1)如圖1,△ABC中,DEBC分別交AB,ACDE兩點(diǎn),過(guò)點(diǎn)EEFABBC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:

四邊形DBFE的面積    ,
EFC的面積S1    
ADE的面積S2    
探究發(fā)現(xiàn)
【小題2】(2)在(1)中,若,,DEBC間的距離為.請(qǐng)證明S2=4S1 S2
拓展遷移

【小題3】(3)如圖2,平行四邊形DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?)中的結(jié)論求△ABC的面積.


【小題1】解:(1),,.      ……3分
【小題2】(2)證明:∵DE∥BC,EF∥AB,
∴四邊形DBFE為平行四邊形,.∴△ADE∽△EFC.
.∵,     ∴
.而,   ∴
【小題3】(3)解:過(guò)點(diǎn)G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形.
,,
∵四邊形DEFG為平行四邊形,∴. 
.∴.    
∴△DBE≌△GHF.∴△GHC的面積為
由(2)得,平行四邊形DBHG的面積為
∴△ABC的面積為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景
【小題1】(1)如圖1,△ABC中,DEBC分別交AB,ACDE兩點(diǎn),過(guò)點(diǎn)EEFABBC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:

四邊形DBFE的面積    ,
EFC的面積S1    
ADE的面積S2    
探究發(fā)現(xiàn)
【小題2】(2)在(1)中,若,,DEBC間的距離為.請(qǐng)證明S2=4S1 S2
拓展遷移

【小題3】(3)如圖2,平行四邊形DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?)中的結(jié)論求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:
如圖1,矩形鐵片ABCD的長(zhǎng)為2a,寬為a; 為了要讓鐵片能穿過(guò)直徑為的圓孔,需對(duì)鐵片進(jìn)行處理(規(guī)定鐵片與圓孔有接觸時(shí)鐵片不能穿過(guò)圓孔);

探究發(fā)現(xiàn):
【小題1】如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),若將矩形鐵片的四個(gè)角去掉,只余下四邊形MNPQ,則此時(shí)鐵片的形狀是 _______,給出證明,并通過(guò)計(jì)算說(shuō)明此時(shí)鐵片都能穿過(guò)圓孔;

拓展遷移:
【小題2】如圖3,過(guò)矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合),沿著這條直線將矩形 鐵片切割成兩個(gè)全等的直角梯形鐵片;
 
①當(dāng)BE=DF=時(shí),判斷直角梯形鐵片EBAF能否穿過(guò)圓孔,并說(shuō)明理由;
②為了能使直角梯形鐵片EBAF順利穿過(guò)圓孔,請(qǐng)直接寫(xiě)出線段BE的長(zhǎng)度的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題背景:在中,、三邊的長(zhǎng)分別為、,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求的高,而借用網(wǎng)格就能計(jì)算出它的面積.
【小題1】請(qǐng)你將的面積直接填寫(xiě)在橫線上._________________________思維拓展:
【小題2】我們把上述求面積的方法叫做構(gòu)圖法.若 三邊的長(zhǎng)分別為、),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為)畫(huà)出相應(yīng)的,并求出它的面積.探索創(chuàng)新:
【小題3】若三邊的長(zhǎng)分別為、,且),試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州市蕭山瓜瀝片八年級(jí)12月月考數(shù)學(xué)卷 題型:解答題

問(wèn)題背景:在△ABC中,AB、BCAC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

【小題1】(1)請(qǐng)你將△ABC的面積直接填寫(xiě)在橫線上.____ _______
【小題2】(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長(zhǎng)分別為a、2aa(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,并求出它的面積.
【小題3】(3)若△ABC三邊的長(zhǎng)分別為、、2(m>0,n>0,且mn),試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案