(2013•鷹潭模擬)如圖是蹺蹺板示意圖,橫板AB繞中點(diǎn)O上下轉(zhuǎn)動(dòng),立柱OC與地面垂直,蹺蹺板AB的一端B碰到地面時(shí),AB與地面的夾角為15°,且AB=6m.
(1)求此時(shí)另一端A離地面的距離(精確到0.1m);
(2)若蹺動(dòng)AB,使端點(diǎn)A碰到地面,求點(diǎn)A運(yùn)動(dòng)路線的長(zhǎng).
(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
分析:(1)過(guò)A作AD⊥BC于點(diǎn)D,根據(jù)比例關(guān)系及三角函數(shù)值可得出AD的值.
(2)根據(jù)出OA的長(zhǎng),求出∠AOD的度數(shù),然后利用弧長(zhǎng)的計(jì)算公式即可得出答案.
解答:解:(1)過(guò)點(diǎn)A作AD⊥BC,交BC的延長(zhǎng)線于D,則
AD=ABsin∠ABC=6×0.26≈1.6m,
所以A到地面的距離約為1.6m;

(2)由題可知,A碰到地面時(shí),AO轉(zhuǎn)過(guò)的角度為30°,
所以點(diǎn)A運(yùn)動(dòng)的路線長(zhǎng)為:
30π×3
180
=
π
2
m
點(diǎn)評(píng):本題考查的是解直角三角形的應(yīng)用及弧長(zhǎng)公式,根據(jù)題意作出輔助線,利用銳角三角函數(shù)的定義求解是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鷹潭模擬)計(jì)算:-22+|
12
-4|+(
1
3
)-1+2tan60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鷹潭模擬)在平行四邊形ABCD中,點(diǎn)E是DC上一點(diǎn),且CE=BC,AB=8,BC=5.
(1)作AF平分∠BAD交DC于F(尺規(guī)作圖,保留作圖痕跡);
(2)在(1)的條件下求EF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鷹潭模擬)已知:拋物線m:y=a(x-2)2+b(ab<0)的頂點(diǎn)為P,與x軸的交點(diǎn)為A,B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)當(dāng)a=-1,b=4,直接寫出與拋物線m有關(guān)的三條正確結(jié)論;
(2)若拋物線m經(jīng)過(guò)原點(diǎn),且△ABP為直角三角形.求a,b的值;
(3)若將拋物線m沿x軸翻折180°得拋物線n,拋物線n的頂點(diǎn)為Q,則以A,P,B,Q為頂點(diǎn)的四邊形能否為正方形?若能,請(qǐng)求出a,b滿足的關(guān)系式;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鷹潭模擬)如圖,AB是⊙O的直徑,AC是弦,∠ACD=
12
∠AOC,AD⊥CD于點(diǎn)D.
(1)求證:CD是⊙O的切線;
(2)若AB=10,AD=2,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案