【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖為她們剌繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成的,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),研究發(fā)現(xiàn)第個圖案中共有個;小正方形.(為整數(shù),且)

1)請寫出第個圖案中有____個小正方形;

2)猜想第個圖案和第個圖案中小正方形個數(shù)之差為

3)證明(2)中的猜想.

【答案】141;(24n;(3)見解析.

【解析】

1)首先觀察給出的四個圖,可以得出正方體的個數(shù)分別為,總結(jié)一般性的規(guī)律,將一般性數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解.
2)根據(jù)(1)得出的一般規(guī)律,可寫出第個圖案中正方形的個數(shù),再與第個圖案中正方形的個數(shù)做差即可得解.
3)利用數(shù)列的求和公式可得第個圖案中正方形的個數(shù)是:,利用此規(guī)律可寫出第個圖案中正方形的個數(shù)是,再讓它們做差即可得證.

1)∵第一個圖案中正方形的個數(shù)是:

第二個圖案中正方形的個數(shù)是:

第三個圖案中正方形的個數(shù)是:

第四個圖案中正方形的個數(shù)是:

個圖案中正方形的個數(shù)是:

∴第五個圖案中正方形的個數(shù)是:

故答案是:

2)∵由(1)可知第個圖案中正方形的個數(shù)是:

個圖案中正方形的個數(shù)是:

∴第個圖案和第個圖案中小正方形個數(shù)之差為

∴第個圖案和第個圖案中小正方形個數(shù)之差為

故答案是:

3)證明:根據(jù)題意,得第個圖案中正方形的個數(shù)為

個圖案和第個圖案中正方形個數(shù)之差為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】學習過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)求sad60°的值;

(2)對于0°<A<180°,A的正對值sadA的取值范圍.

(3)已知sinα=,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學進行的推理,請你將小麗同學的推理過程補充完整.

解:成立,理由如下:

(已知)

(同旁內(nèi)角互補,兩條直線平行)

(②

(已知),(等量代換)

(③

(④ ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.

1)求普通列車的行駛路程;

2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,延長線上一點,點上,且

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)a≠0)的圖象交x軸于AB兩點,交y軸于點D,點B的坐標為(3,0),頂點C的坐標為(1,4).

(1)求二次函數(shù)的解析式和直線BD的解析式;

(2)點P是直線BD上的一個動點,過點Px軸的垂線,交拋物線于點M,當點P在第一象限時,求線段PM長度的最大值;

(3)在拋物線上是否存在異于B、D的點Q,使BDQBD邊上的高為?若存在求出點Q的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是(

A.B.①④C.①③D.①②④⑥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案