【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進行選拔,這三項的成績滿分均為100分,并按2∶3∶5的比例納入總分.最后,按照成績的排序從高到低依次錄取.該區(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進入說課環(huán)節(jié),這6名選手的各項成績見下表:
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
筆試成績/分 | 66 | 90 | 86 | 64 | 65 | 84 |
專業(yè)技能測試成績/分 | 95 | 92 | 93 | 80 | 88 | 92 |
說課成績/分 | 85 | 78 | 86 | 88 | 94 | 85 |
(1)寫出說課成績的中位數、眾數;
(2)已知序號為1,2,3,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這6名選手中序號是多少的選手將被錄用?為什么?
【答案】(1)中位數是85.5分;眾數是85分;(2)序號是3,6號的選手將被錄用,見解析.
【解析】
(1)利用中位數、眾數的定義求解;
(2)先求出序號為5號的選手成績和序號為6號的選手成績,再與序號為1、2、3、4號選手的成績進行比較,即可得出答案.
將說課的成績按從小到大的順序排列:78、85、85、86、88、94,
∴中位數是(85+86)÷2=85.5,
85出現的次數最多,
∴眾數是85.
(2)這六位選手中序號是3、6的選手將被錄用.原因如下:
序號為5號的選手成績?yōu)椋?/span>(分);
序號為6號的選手成績?yōu)椋?/span>(分).
因為88.1>86.9>86.4>84.6>84.2>80.8,
所以序號為3、6號的選手將被錄用.
科目:初中數學 來源: 題型:
【題目】一輛貨車從倉庫O出發(fā)在東西街道上運送水果,規(guī)定向東為正方向,一次到達的5個銷售地點分別為A,B,C,D,E,最后回到倉庫O,貨車行駛的記錄(單位:千米)如下:+2,+3,﹣6,﹣1,﹣2,+4.請問:
(1)請以倉庫O為原點,向東為正方向,選擇適當的單位長度,畫出數軸,并標出A,B,C,D,E的位置;
(2)試求出該貨車共行駛了多少千米?
(3)如果貨車運送的水果以100千克為標準重量,超過的千克數記為正數,不足的千克數記為負數,則運往A,B,C,D,E五個地點的水果重量可記為:+50,﹣15,+25,﹣10,﹣20,則該貨車運送的水果總重量是多少千克?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司經營楊梅業(yè)務,以3萬元/噸的價格買入楊梅后,分揀成A、B兩類,A類楊梅包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數量x(≥2,單位:噸)之間的函數關系如圖所示;B類楊梅深加工后再銷售,深加工總費用s(單位:萬元)與加工數量t(單位:噸)之間的函數關系是,平均銷售價格為9萬元/噸.
(1)A類楊梅的銷售量為5噸時,它的平均銷售價格是每噸多少萬元?
(2)若該公司收購10噸楊梅,其中A類楊梅有4噸,則經營這批楊梅所獲得的毛利潤(w)為多少萬元?(毛利潤=銷售總收入-經營總成本)
(3)若該公司收購20噸楊梅,其中A類楊梅有x噸,經營這批楊梅所獲得的毛利潤為w萬元.
①求w關于x的函數關系式;
②若該公司獲得了30萬元毛利潤,問:用于直銷的A類楊梅有多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AB的中點,E是CD的中點, 過點C作CF//AB交AE的延長線于點F,連接BF.
(1) 求證:DB=CF;
(2) 如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知直線與x、y軸交于B、C兩點,A(0,0),在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第n個等邊三角形的邊長等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠B=90°,tan∠BAC=,半徑為2的⊙O從點A開始(圖1),沿AB向右滾動,滾動時始終與AB相切(切點為D);當圓心O落在AC上時滾動停止,此時⊙O與BC相切于點E(圖2).作OG⊥AC于點G.
(1)利用圖2,求cos∠BAC的值;
(2)當點D與點A重合時(如圖1),求OG;
(3)如圖3,在⊙O滾動過程中,設AD=x,請用含x的代數式表示OG,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)先化簡再求值:7a2b+(4a2b﹣9ab2)﹣2(5a2b﹣3ab2),其中a=2,b=﹣1.
(2)已知代數式 A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1
①求 2A﹣B.
②若 2A﹣B 的值與 x 的取值無關,求 y 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“十一”黃金周期間,淮安動物園在7天假期中每天接待的人數變化如下表(正數表示比前一天多的人數,負數表示比前一天少的人數),把9月30日的游客人數記為a萬人.
(1)請用含a的代數式表示10月2日的游客人數;
(2)請判斷七天內游客人數最多的是哪天,有多少人?
(3)若9月30日的游客人數為2萬人,門票每人10元,問黃金周期間淮安動物園門票收入是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com