【題目】已知:如圖,直線y=3x+3與x軸交于C點(diǎn),與y軸交于A點(diǎn),B點(diǎn)在x軸上,△OAB是等腰直角三角形.

(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點(diǎn),求D點(diǎn)的坐標(biāo);
(3)若P點(diǎn)是拋物線上的動(dòng)點(diǎn),且在第一象限,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)和△PAB的最大面積;若沒有,請(qǐng)說明理由.

【答案】
(1)解:令y=3x+3=0得:x=﹣1,

故點(diǎn)C的坐標(biāo)為(﹣1,0);

令x=0得:y=3x+3=3×0+3=3

故點(diǎn)A的坐標(biāo)為(0,3);

∵△OAB是等腰直角三角形.

∴OB=OA=3,

∴點(diǎn)B的坐標(biāo)為(3,0),

設(shè)過A、B、C三點(diǎn)的拋物線的解析式y(tǒng)=ax2+bx+c,

解得:

∴解析式為:y=﹣x2+2x+3


(2)解:設(shè)直線AB的解析式為y=kx+b,

解得:

∴直線AB的解析式為:y=﹣x+3

∵線CD∥AB

∴設(shè)直線CD的解析式為y=﹣x+b

∵經(jīng)過點(diǎn)C(﹣1,0),

∴﹣(﹣1)+b=0

解得:b=﹣1,

∴直線CD的解析式為:y=﹣x﹣1,

令﹣x﹣1=﹣x2+2x+3,

解得:x=﹣1,或x=4,

將x=4代入y=﹣x2+2x+3=﹣16+2×4+3=﹣5,

∴點(diǎn)D的坐標(biāo)為:(4,﹣5)


(3)解:存在.如圖1所示,設(shè)P(x,y)是第一象限的拋物線上一點(diǎn),

過點(diǎn)P作PN⊥x軸于點(diǎn)N,則ON=x,PN=y,BN=OB﹣ON=3﹣x.

SABP=S梯形PNOA+SPNB﹣SAOB

= (OA+PN)ON+ PNBN﹣ OAOB

= (3+y)x+ y(3﹣x)﹣ ×3×3

= (x+y)﹣

∵P(x,y)在拋物線上,∴y=﹣x2+2x+3,代入上式得:

SPAB= (x+y)﹣ =﹣ (x2﹣3x)=﹣ (x﹣ 2+ ,

∴當(dāng)x= 時(shí),SPAB取得最大值.

當(dāng)x= 時(shí),y=﹣x2+2x+3= ,

∴P( , ).

所以,在第一象限的拋物線上,存在一點(diǎn)P,使得△ABP的面積最大;

P點(diǎn)的坐標(biāo)為( ),最大值為:


【解析】(1)先求出直線AC與x軸、y軸的交點(diǎn)的坐標(biāo),就可得出點(diǎn)A、C的坐標(biāo),再根據(jù)△OAB是等腰直角三角形.得出OA=OB,得出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法就可求出過A、B、C三點(diǎn)的拋物線的解析式。
(2)先利用待定系數(shù)法求出直線AB的函數(shù)解析式,再根據(jù)CD∥AB,可知直線CD的解析式和直線AB的解析式中k值相等,再把點(diǎn)C的坐標(biāo)代入即可求出直線CD的函數(shù)解析式,然后由拋物線的解析式和直線CD的解析式聯(lián)立方程,解方程就可求出點(diǎn)D的坐標(biāo)。
(3)抓住已知P點(diǎn)是拋物線上的動(dòng)點(diǎn)且在第一象限,因此過點(diǎn)P作PN⊥x軸于點(diǎn)N,設(shè)P(x,﹣x2+2x+3),用含x的代數(shù)式分別表示出ON、PN、BN的長,再根據(jù)SABP=S梯形PNOA+SPNB﹣SAOB建立s與x的函數(shù)解析式,求出其頂點(diǎn)坐標(biāo),即可得出結(jié)果。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解確定一次函數(shù)的表達(dá)式(確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握二次函數(shù)的最值(如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)軸正半軸上,點(diǎn)軸的負(fù)半軸上,點(diǎn)軸正半軸上,,梯形的面積為,.

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)從點(diǎn)出發(fā)以個(gè)單位/秒的速度沿向終點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)以個(gè)單位秒的速度沿向終點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長為,用含的關(guān)系式表示,并直接寫出相應(yīng)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙A與y軸相切于點(diǎn)B(0, ),與x軸相交于M,N兩點(diǎn),如果點(diǎn)M的坐標(biāo)為( ,0),求點(diǎn)N的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E在AD上,連接CE并延長與BA的延長線交于點(diǎn)F,若AE=2ED,則 的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄的是今年長江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達(dá)到警戒水位米(正號(hào)表示水位比前一天上升,負(fù)號(hào)表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長都為1個(gè)單位長度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E

(1)畫出△DEF;

(2)連接AD、BE,則線段ADBE的關(guān)系是 ;

(3)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對(duì)外開放.在換水時(shí)需要經(jīng)“排水—清冼—灌水”的過程.某游泳館從早上7:00開始對(duì)游泳池進(jìn)行換水,已知該游泳池的排水速度是灌水速度的1.6倍,其中游泳池內(nèi)剩余的水量y(m3)與換水時(shí)間x(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)填空:該游泳池清洗需要   小時(shí);

(2)求排水過程中的y(m3)x(h)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)若該游泳館在換水結(jié)束后30分鐘才能對(duì)外開放,試問游泳愛好者小明能否在中午12:40進(jìn)入該游泳館游泳?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3mBC=4m,CD=13m,AD=12m

1)求出空地ABCD的面積?

2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、,求此三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請(qǐng)你將△ABC的面積直接填寫在橫線上:   

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別a、a、a(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案