【題目】如圖,直線(xiàn)y=﹣x+5與雙曲線(xiàn)(x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線(xiàn)y=﹣x+5向下平移1個(gè)單位,則所得直線(xiàn)與雙曲線(xiàn)(x>0)的交點(diǎn)有(

A.0個(gè) B.1個(gè) C.2個(gè) D.0個(gè),或1個(gè),或2個(gè)

【答案】B

【解析】

試題分析:令直線(xiàn)y=﹣x+5與y軸的交點(diǎn)為點(diǎn)D,過(guò)點(diǎn)O作OE⊥直線(xiàn)AC于點(diǎn)E,過(guò)點(diǎn)B作BF⊥x軸于點(diǎn)F,如圖所示.

令直線(xiàn)y=﹣x+5中x=0,則y=5,即OD=5;

令直線(xiàn)y=﹣x+5中y=0,則0=﹣x+5,解得:x=5,即OC=5.

在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.

∵OE⊥AC,BF⊥x軸,∠DCO=45°,∴△OEC與△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△BOC=BCOE=BC=,∴BC=,∴BF=FC=BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴點(diǎn)B的坐標(biāo)為(4,1),∴k=4×1=4,即雙曲線(xiàn)解析式為

將直線(xiàn)y=﹣x+5向下平移1個(gè)單位得到的直線(xiàn)的解析式為y=﹣x+5﹣1=﹣x+4,將y=﹣x+4代入到中,得:,整理得:,∵△=16﹣4×4=0,∴平移后的直線(xiàn)與雙曲線(xiàn)只有一個(gè)交點(diǎn).故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)2015年屋頂綠化面積為2000平方米,計(jì)劃2017年屋頂綠化面積要達(dá)到2880平方米.若設(shè)屋頂綠化面積的年平均增長(zhǎng)率為x,則依題意所列方程正確的是(  )

A. 2000x2=2880 B. 2000(1+2x)=2880

C. 2000(1+x2=2880 D. 2000(1﹣x2=2880

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)2, 6, 2, 5, 4,,則這組數(shù)據(jù)的中位數(shù)是( )

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,BE平分ABC,CF平分BCD,BE、CF交于點(diǎn)G.若使EF=AD,那么平行四邊形ABCD應(yīng)滿(mǎn)足的條件是( 。

A. ABC=60° B. ABBC=14 C. ABBC=52 D. ABBC=58

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖1,在正方形ABCD中,EF分別是邊AD、DC上的點(diǎn),且AF⊥BE

1)求證:AF=BE

2)如圖2,在正方形ABCD中,MN、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQMPNQ是否相等?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)多邊形的內(nèi)角和等于它的外角和,則這個(gè)多邊形的邊數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別是(﹣3,0),(0,6),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)C從點(diǎn)B出發(fā),沿射線(xiàn)BO方向以每秒2個(gè)單位的速度運(yùn)動(dòng).以CP,CO為鄰邊構(gòu)造PCOD,在線(xiàn)段OP延長(zhǎng)線(xiàn)上取點(diǎn)E,使PE=AO,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)點(diǎn)C運(yùn)動(dòng)到線(xiàn)段OB的中點(diǎn)時(shí),求t的值及點(diǎn)E的坐標(biāo);

(2)當(dāng)點(diǎn)C在線(xiàn)段OB上時(shí),求證:四邊形ADEC為平行四邊形;

(3)在線(xiàn)段PE上取點(diǎn)F,使PF=2,過(guò)點(diǎn)F作MN⊥PE,截取FM=,F(xiàn)N=1,且點(diǎn)M,N分別在第一、四象限,在運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)M,N中,有一點(diǎn)落在四邊形ADEC的邊上時(shí),直接寫(xiě)出所有滿(mǎn)足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,梯形中,,,,,點(diǎn)是邊上的動(dòng)點(diǎn),點(diǎn)是射線(xiàn)上一點(diǎn),射線(xiàn)和射線(xiàn)交于點(diǎn),且

(1)求線(xiàn)段的長(zhǎng);

(2)如果是以為腰的等腰三角形,求線(xiàn)段的長(zhǎng);

(3)如果點(diǎn)在邊上(不與點(diǎn)重合),設(shè),求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案