【題目】蘋果進(jìn)價(jià)是每千克x元,要得到10%的利潤,則該蘋果售價(jià)應(yīng)是每千克_____元(用含x的代數(shù)式表示)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會(huì)的關(guān)注.“五一”期間,小記者劉銘隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖①;
(2)求圖②中表示家長“贊成”的圓心角的度數(shù);
(3)如果該市有8萬名初中生,持“無所謂”態(tài)度的學(xué)生大約有多少人?
(4)從這次接受調(diào)查的家長與學(xué)生中隨機(jī)抽查一個(gè),恰好是“無所謂”態(tài)度的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過程.
思路:(1) 作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計(jì)算三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)點(diǎn)D的坐標(biāo)為 ;
(3)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)A、B除外),在x軸上方是否存在另一個(gè)點(diǎn)N,使得以O、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請(qǐng)說明理由;若存在,請(qǐng)求出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)130000可用科學(xué)記數(shù)法表示為( 。
A. 13×104 B. 1.3×105 C. 0.13×106 D. 1.3×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家趙爽的“勾股方圓圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么(a+b)2的值為( )
A.49 B.25 C.13 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC=6,BD=8,點(diǎn)E、F分別是邊AB、BC的中點(diǎn),點(diǎn)P在AC上運(yùn)動(dòng),在運(yùn)動(dòng)過程中,存在PE+PF的最小值,則這個(gè)最小值是________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com