【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動(dòng),第二層有兩枚固定不動(dòng)的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動(dòng),甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對(duì)稱圖形的概率是 .
(2)若甲、乙均可在本層移動(dòng). ①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對(duì)稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對(duì)稱圖形的概率是 .
【答案】
(1)
(2)解:①由樹狀圖可知,黑色方塊所構(gòu)拼圖是軸對(duì)稱圖形的概率= .
②
【解析】解:(1)若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖一共有3種可能,其中有兩種情形是軸對(duì)稱圖形,所以若乙固定在E處,移動(dòng)甲后黑色方塊構(gòu)成的拼圖是軸對(duì)稱圖形的概率是 . 故答案為 .(2)②黑色方塊所構(gòu)拼圖中是中心對(duì)稱圖形有兩種情形,①甲在B處,乙在F處,②甲在C處,乙在E處,
所以黑色方塊所構(gòu)拼圖是中心對(duì)稱圖形的概率是 .
故答案為 .
(1)若乙固定在E處,求出移動(dòng)甲后黑色方塊構(gòu)成的拼圖一共有多少種可能,其中是軸對(duì)稱圖形的有幾種可能,由此即可解決問(wèn)題.(2)①畫出樹狀圖即可解決問(wèn)題.②中心對(duì)稱圖形有兩種可能,由此即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下兩小題后作出相應(yīng)的解答:
(1)“同位角相等,兩直線平行”,“兩直線平行,同位角相等”,這兩個(gè)命題的題設(shè)和結(jié)論在命題中的位置恰好對(duì)凋,我們把其中一命題叫做另一個(gè)命題的逆命題,請(qǐng)你寫出命題“角平分線上的點(diǎn)到角兩邊的距離相等“的逆命題,并指出逆命題的題設(shè)和結(jié)論;
(2)根據(jù)以下語(yǔ)句作出圖形,并寫出該命題的文字?jǐn)⑹?/span>.
已知:過(guò)直線AB上一點(diǎn)O任作射線OC,OM、ON分別平分∠AOC、∠BOC,則OM⊥ON.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為, , ,求這個(gè)三角形的面積.小明同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長(zhǎng)分別為, , ,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=8,如圖在OC邊上取一點(diǎn)D,將△BCD沿BD折疊,使點(diǎn)C恰好落在OA邊上,記作E點(diǎn);
(1)求點(diǎn)E的坐標(biāo)及折痕DB的長(zhǎng);
(2)在x軸上取兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)),且MN=4.5,求使四邊形BDMN的周長(zhǎng)最短的點(diǎn)M、點(diǎn)N的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解答過(guò)程:如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
解:過(guò)點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,分別以AB,AC為直角邊向外作等腰直角△ABD和等腰直角△ACE,G為BD的中點(diǎn),連接CG,BE,CD,BE與CD交于點(diǎn)F.
(1)判斷四邊形ACGD的形狀,并說(shuō)明理由.
(2)求證:BE=CD,BE⊥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”長(zhǎng)假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過(guò)小李家.
(1)若兩人同時(shí)出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過(guò)多少小時(shí)能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時(shí)二人相遇,則小張的車速應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD中,E是CD上的一點(diǎn)連接AE、BE,如圖給出四個(gè)條件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC,請(qǐng)你以其中三個(gè)作為命題的條件,寫出一個(gè)能推出AD∥BC的正確命題,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M是Rt△ABC的斜邊AB的中點(diǎn),連接CM,作線段CM的垂直平分線,分別交邊CB和CA的延長(zhǎng)線于點(diǎn)D、E,若∠C=90°,AB=20,tanB= ,則DE= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com