【題目】在直角坐標(biāo)系中,直線軸交于點(diǎn),以為邊長作等邊,過點(diǎn)平行于軸,交直線于點(diǎn),以為邊長作等邊,過點(diǎn)平行于軸,交直線于點(diǎn),以為邊長作等邊,,則等邊的邊長是______.

【答案】

【解析】

先從特殊得到一般探究規(guī)律后,利用規(guī)律解決問題即可;

∵直線ly=x-x軸交于點(diǎn)B1
B11,0),OB1=1,OA1B1的邊長為1;
∵直線y=x-x軸的夾角為30°,∠A1B1O=60°
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
A1B2=2A1B1=2,A2B3A3的邊長是2,
同法可得:A2B3=4,A2B3A3的邊長是22;
由此可得,AnBn+1An+1的邊長是2n,
∴△A2018B2019A2019的邊長是22018
故答案為22018

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)決定在本校學(xué)生中開展足球、籃球、羽毛球、乒乓球四種活動,為了了解學(xué)生對這四種活動的喜愛情況,學(xué)校隨機(jī)調(diào)查了該校m名學(xué)生,看他們喜愛哪一種活動(每名學(xué)生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計圖.請你根據(jù)圖中的信息,解答下列問題.

(1)m=   ,n=   ;

(2)請補(bǔ)全圖中的條形圖;

(3)扇形統(tǒng)計圖中,足球部分的圓心角是   度;

(4)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校1800名學(xué)生中,大約有多少人喜愛踢足球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB8,AEEGGD4ABEFGH.將矩形紙片沿BE折疊,得到△BAE(點(diǎn)A折疊到A′處),展開紙片;再沿BA′折疊,折痕與GH,AD分別交于點(diǎn)M,N,然后將紙片展開.

1)連接EM,證明AMMG;

2)設(shè)AMMGx,求x值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:有兩個角和第三個角的平分線對應(yīng)相等的兩個三角形全等;有兩條邊和第三條邊上的中線對應(yīng)相等的兩個三角形全等;有兩條邊和第三條邊上的高對應(yīng)相等的兩個三角形全等.其中正確的是( 。

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人勻速從同一地點(diǎn)到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50/分的速度沿同一路線行走.設(shè)甲乙兩人相距s(米),甲行走的時間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.下列結(jié)論正確的個數(shù)是( 。

1t5時,s150;(2t35時,s450;(3)甲的速度是30/分;(4t12.5時,s0

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點(diǎn),表示的數(shù),滿足,點(diǎn)為線段上一點(diǎn)(不與,重合),,兩點(diǎn)分別從,同時向數(shù)軸正方向移動,點(diǎn)運(yùn)動速度為每秒2個單位長度,點(diǎn)運(yùn)動速度為每秒3個單位長度,設(shè)運(yùn)動時間為秒(.

1)直接寫出______,______;

2)若點(diǎn)表示的數(shù)是0.

,則的長為______(直接寫出結(jié)果);

②點(diǎn)在移動過程中,線段,之間是否存在某種確定的數(shù)量關(guān)系,判斷并說明理由;

3)點(diǎn),均在線段上移動,若,且到線段的中點(diǎn)的距離為3,請求出符合條件的點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PGDCH,折痕為EF,連接BPBH

1)求證:∠APB=∠BPH;

2)當(dāng)點(diǎn)P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1

2

30--5

4-2.5-5.9

512--18+-7-15

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2bxca≠0)的部分圖像,其中點(diǎn)A-1,0)是x軸上的一個交點(diǎn),點(diǎn)Cy軸上的交點(diǎn).

1)若過點(diǎn)A的直線l與這個二次函數(shù)的圖像的另一個交點(diǎn)為D,與該圖像的對稱軸交于點(diǎn)E,與y軸交于點(diǎn)F,且DEEFFA

①求的值;

②設(shè)這個二次函數(shù)圖像的頂點(diǎn)為P,問:以DF為直徑的圓能否經(jīng)過點(diǎn)P?若能,請求出此時二次函數(shù)的關(guān)系式;若不能,請說明理由.

2)若點(diǎn)C坐標(biāo)為(0,-1),設(shè)Sabc ,求S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案