【題目】如圖,從下列三個條件中:(1); (2); (3).任選兩個作為條件,另一個作為結論,書寫出一個真命題,并證明.
命題:
證明:
【答案】見解析.
【解析】分析:根據題意可知已知AD∥CB,AB∥CD求證∠A=∠C.欲證∠A=∠C,需證明∠A=∠ABF且∠C=∠ABF,根據兩直線平行,內錯角相等及兩直線平行,同位角相等可證.
本題解析:
命題:如果 AD∥CB, AB∥CD ,那么∠A=∠C(答案不唯一)
證明:∵AD∥CB
∴∠A=∠ABF
∵AB∥CD
∴∠C=∠ABF
又∵ ∠A=∠ABF
∴∠A=∠C
點睛: 此題考查了平行線的判定與性質,解答此類判定兩角相等的問題,需先確定兩角的位置關系,由平行線的性質求出兩角相等即可.本題是一道探索性條件開放性題目,能有效地培養(yǎng)“執(zhí)果索因”的思維方式與能力.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)有三角形“▲"和“△”共2011個,按照一定的規(guī)律排列如下: ▲△△▲△▲▲△△▲△▲▲…….,則黑色三角形共有_____個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉90°至AE,連接DE,則△ADE的面積等于 ( )
A.10 B.11 C.12 D.13
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方,其中∠OMN=30°.
(1)將圖①中的三角尺繞點O順時針旋轉至圖②,使一邊OM在∠BOC的內部,且恰好平分∠BOC,則∠CON=________;
(2)將圖①中的三角尺繞點O按每秒10°的速度沿順時針方向旋轉一周,在旋轉的過程中,在第________秒時,邊MN恰好與射線OC平行;在第________秒時,直線ON恰好平分銳角∠AOC(直接寫出結果);
(3)將圖①中的三角尺繞點O順時針旋轉至圖③,使ON在∠AOC的內部,請?zhí)骄俊?/span>AOM與∠NOC之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2EC,給出下列四個結論:
①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正確的結論共有
A. ①②③ B. ①③④ C. ②③ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com