(2007•臺州)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,將邊BC折疊,使點(diǎn)B落在邊OA的點(diǎn)D處.已知折疊CE=5,且tan∠EDA=
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo);
(3)是否存在過點(diǎn)D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

【答案】分析:(1)證兩三角形相似,必須得出兩組對應(yīng)角相等,所求的兩個三角形中,已知了一組直角,因此只需找出另一組對應(yīng)角相等即可得出相似的結(jié)論.由于∠CDE為90°,那么∠CDO和∠EDA互余,而∠OCD也和∠CDO互余,因此根據(jù)同角的余角相等即可得出∠OCD=∠EDA,由此可證得兩三角形相似.
(2)本題的關(guān)鍵是求出C、E點(diǎn)的坐標(biāo),根據(jù)∠EDA的正切值,可設(shè)AE=3t,那么DA=4t,DE=5t.則OC=AE+BE=AE+DE=8t,進(jìn)而可根據(jù)(1)的相似三角形得出的關(guān)于OC、CD、AD、DE的比例關(guān)系式,來求出CD的值,然后可在直角三角形CDE中求出t的值,即可得出AE、BC的長,即確定了E點(diǎn)的坐標(biāo),然后根據(jù)C,E兩點(diǎn)的坐標(biāo)求出直線CE的解析式,即可求得直線CE與x軸交點(diǎn)P的坐標(biāo).
(3)應(yīng)該有兩條如圖
①直線BF,根據(jù)折疊的性質(zhì)可知CE必垂直平分BD,那么∠DGP=∠CGF=90°,而∠CFG=∠DPG(都是∠OCP的余角),由此可得出兩三角形相似,那么可根據(jù)B、D兩點(diǎn)的坐標(biāo)求出此直線的解析式.
②直線DN,由于∠FCP=∠NDO,那么可根據(jù)∠OCE即∠BEC的正切值,求出∠NDO的正切值,然后用OD的長求出ON的值,即可求出N點(diǎn)的坐標(biāo),然后根據(jù)N、D兩點(diǎn)的坐標(biāo)求出直線DN的解析式.
解答:解:(1)△OCD與△ADE相似.
理由如下:
由折疊知,∠CDE=∠B=90°,
∴∠CDO+∠EDA=90°,
∵∠CDO+∠OCD=90°,
∴∠OCD=∠EOA.
又∵∠COD=∠DAE=90°,
∴△OCD∽△ADE.

(2)∵tan∠EDA=,
∴設(shè)AE=3t,則AD=4t,
由勾股定理得DE=5t,
∴OC=AB=AE+EB=AE+DE=3t+5t=8t.
由(1)△OCD∽△ADE,得
,
∴CD=10t.
在△DCE中,∵CD2+DE2=CE2,
∴(10t)2+(5t)2=(52,
解得t=1.
∴OC=8,AE=3,點(diǎn)C的坐標(biāo)為(0,8),
點(diǎn)E的坐標(biāo)為(10,3),
設(shè)直線CE的解析式為y=kx+b,
,
解得
∴y=-x+8,則點(diǎn)P的坐標(biāo)為(16,0).

(3)滿足條件的直線l有2條:y1=-2x+12,y2=2x-12.
如圖:準(zhǔn)確畫出兩條直線.
點(diǎn)評:本題考查了一次函數(shù)的應(yīng)用、圖形的翻折變換、矩形的性質(zhì)、相似三角形的判定和性質(zhì)等知識點(diǎn),主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2007•臺州)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,將邊BC折疊,使點(diǎn)B落在邊OA的點(diǎn)D處.已知折疊CE=5,且tan∠EDA=
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo);
(3)是否存在過點(diǎn)D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2007•臺州)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,將邊BC折疊,使點(diǎn)B落在邊OA的點(diǎn)D處.已知折疊CE=5,且tan∠EDA=
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo);
(3)是否存在過點(diǎn)D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•臺州)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,將邊BC折疊,使點(diǎn)B落在邊OA的點(diǎn)D處.已知折疊CE=5,且tan∠EDA=
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo);
(3)是否存在過點(diǎn)D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(20)(解析版) 題型:解答題

(2007•臺州)如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,將邊BC折疊,使點(diǎn)B落在邊OA的點(diǎn)D處.已知折疊CE=5,且tan∠EDA=
(1)判斷△OCD與△ADE是否相似?請說明理由;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo);
(3)是否存在過點(diǎn)D的直線l,使直線l、直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案