如圖,已知矩形ABCD中,AB=4cm,AD=10cm,點P在邊BC上移動,點E、F、G、H分別是AB、AP、DP、DC的中點.
(1)求證:EF+GH=5cm;
(2)求當(dāng)∠APD=90°時,數(shù)學(xué)公式的值.

(1)證明:∵矩形ABCD,AD=10cm,
∴BC=AD=10cm.
∵E、F、G、H分別是AB、AP、DP、DC的中點,
∴EF+GH=BP+PC=BC.
∴EF+GH=5cm.

(2)解:∵矩形ABCD,
∴∠B=∠C=90°,
又∵∠APD=90°,
在直角△APD中,AD2=AP2+DP2,
同理,AP2=AB2+BP2,PD2=PC2+CD2=PC2+AB2
∴AD2=AP2+DP2=AB2+BP2+PC2+DC2=BP2+(BC-BP)2+2AB2=BP2+(10-BP)2+32,
即100=2BP2-20BP+100+32,
解得BP=2或8(cm),
當(dāng)BP=2時,PC=8,EF=1,GH=4,這時
當(dāng)BP=8時,PC=2,EF=4,GH=1,這時
的值為或4.
分析:E、F、G、H分別是AB、AP、DP、DC的中點,則EF,GH分別是△ABP,△DCP的中位線,得到EF+GH=BC;
根據(jù)∠APD=90°,利用勾股定理得到AD2=AP2+DP2=AB2+BP2+PC2+DC2=BP2+(BC-BP)2+2AB2=BP2+(10-BP)2+32,就得到關(guān)于BP的方程,從而求出BP的長,因而根據(jù)中位線定理求出EF,GH的長,從而求出比值.
點評:本題主要考查了三角形的中位線定理.三角形的中位線平行于第三邊,并且等于第三邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標(biāo)系,用運動時間t(秒)表示點D的坐標(biāo);
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當(dāng)t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案