【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA的延長(zhǎng)線于點(diǎn)Q,則下列結(jié)論:
①AE=BF;②S四邊形ECFG=S△ABG;③△BFQ是等腰三角形;④.
其中一定正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
①根據(jù)正方形的性質(zhì)和已知條件證明△ABE≌△BCF即可;②根據(jù)三角形ABE和三角形BFC面積相等即可證明S四邊形ECFG=S△ABG;③根據(jù)折疊可得∠CFB=∠PFB,由DC∥AB得∠CFB=∠FBA,等量代換后即可證明△BFQ是等腰三角形;④可以設(shè)正方形邊長(zhǎng)為1,AQ=x,AH=y,作FI⊥AB于點(diǎn)I,進(jìn)而根據(jù)同角三角函數(shù)值相等用含x的式子表示y,然后求出QH,利用勾股定理列出方程求出x的值,即可得到.
解:①∵在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),
∴AB=BC,∠ABE=∠BCF=90°,BE=CF,
∴△ABE≌△BCF(SAS),
∴AE=BF,故①正確;
②∵△ABE≌△BCF,
∴S△BCF=S△ABE,
∴SBCF﹣S△BGE=S△ABE﹣S△BGE,即S四邊形ECFG=S△ABG,故②正確;
③∵由折疊可知:∠CFB=∠PFB,
∵DC∥AB,
∴∠CFB=∠FBA,
∴∠PFB=∠FBA,
∴QF=QB,
∴△BFQ是等腰三角形,故③正確;
④如圖所示:
設(shè)PQ與AD交于點(diǎn)H,作FI⊥AB于點(diǎn)I,則四邊形DAIF是矩形,
設(shè)正方形ABCD邊長(zhǎng)為1,AQ=x,AH=y,
則FI=AD=1,AI=,QI=x+,
在Rt△AQH和Rt△FIQ中,tan∠Q=,即,
∴y=,
∵AH∥FI,
∴,即,
∴,
在Rt△AHQ中,根據(jù)勾股定理得:x2+y2=y2(1+x)2,
∴x2+()2=()2(1+x)2,
解得:x=,
經(jīng)檢驗(yàn),x=是方程的解,
∴BQ,
∴,故④正確.
∴正確的是①②③④,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,且OB=3OA,與y軸交于點(diǎn)C,此拋物線頂點(diǎn)為點(diǎn)D.
(1)求拋物線的表達(dá)式及點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)E是y軸上的一點(diǎn)(點(diǎn)E與點(diǎn)C不重合),當(dāng)BE⊥DE時(shí),求點(diǎn)E的坐標(biāo);
(3)如果點(diǎn)F是拋物線上的一點(diǎn).且∠FBD=135°,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)答題競(jìng)猜活動(dòng),在6個(gè)式樣、大小都相同的箱子中有且只有一個(gè)箱子里藏有禮物.參與選手將回答5道題目,每答對(duì)一道題,主持人就從6個(gè)箱子中去掉一個(gè)空箱子.而選手一旦答錯(cuò),即取消后面的答題資格,從剩下的箱子中選取一個(gè)箱子.
(1)一個(gè)選手答對(duì)了4道題,求他選中藏有禮物的箱子的概率;
(2)已知一個(gè)選手選中藏有禮物的箱子的概率為,則他答對(duì)了幾道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點(diǎn)在邊上,連接,過作的垂線交的延長(zhǎng)線于點(diǎn).
(1)若,分別為線段,的中點(diǎn),如圖1,求證:;
(2)如圖2,過點(diǎn)作交于點(diǎn),求證:;
(3)如圖3,以為一邊作一個(gè)角等于,這個(gè)角的另一邊與的延長(zhǎng)線交于點(diǎn),為的中點(diǎn),連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑作圓,分別交于點(diǎn),交的延長(zhǎng)線于點(diǎn),過點(diǎn)作于點(diǎn),連接交線段于點(diǎn).
(1)求證:是圓的切線;
(2)若為的中點(diǎn),求的值;
(3)若,求圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
【答案】②③
【解析】分析:(1)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(2)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(3)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(4)結(jié)合x的取值范圍,分類討論,利用題目中給出的方法計(jì)算后判定即可.
詳解:
①當(dāng)x=1.7時(shí),
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①錯(cuò)誤;
②當(dāng)x=﹣2.1時(shí),
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正確;
③當(dāng)1<x<1.5時(shí),
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正確;
④∵﹣1<x<1時(shí),
∴當(dāng)﹣1<x<﹣0.5時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)﹣0.5<x<0時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)x=0時(shí),y=[x]+(x)+x=0+0+0=0,
當(dāng)0<x<0.5時(shí),y=[x]+(x)+x=0+1+x=x+1,
當(dāng)0.5<x<1時(shí),y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,則x﹣1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,
∴當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故④錯(cuò)誤,
故答案為:②③.
點(diǎn)睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結(jié)合x的取值范圍分情況討論即可.
【題型】填空題
【結(jié)束】
19
【題目】先化簡(jiǎn)再求值: ,其中, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點(diǎn)D在邊BC上,BD=2CD(圖4).把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)、分別與點(diǎn)、對(duì)應(yīng),與邊交于點(diǎn).如果,那么的長(zhǎng)是____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com