【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
【答案】
(1)
解:∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,
∴B(3,0),C(0,3),
把B、C坐標(biāo)代入拋物線解析式可得 ,解得 ,
∴拋物線解析式為y=x2﹣4x+3
(2)
解:∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線對稱軸為x=2,P(2,﹣1),
設(shè)M(2,t),且C(0,3),
∴MC= = ,MP=|t+1|,PC= =2 ,
∵△CPM為等腰三角形,
∴有MC=MP、MC=PC和MP=PC三種情況,
①當(dāng)MC=MP時,則有 =|t+1|,解得t= ,此時M(2, );
②當(dāng)MC=PC時,則有 =2 ,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時M(2,7);
③當(dāng)MP=PC時,則有|t+1|=2 ,解得t=﹣1+2 或t=﹣1﹣2 ,此時M(2,﹣1+2 )或(2,﹣1﹣2 );
綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2, )或(2,7)或(2,﹣1+2 )或(2,﹣1﹣2 )
(3)
解:如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,
設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB= EFOD+ EFBD= EFOB= ×3(﹣x2+3x)=﹣ (x﹣ )2+ ,
∴當(dāng)x= 時,△CBE的面積最大,此時E點(diǎn)坐標(biāo)為( ,﹣ ),
即當(dāng)E點(diǎn)坐標(biāo)為( ,﹣ )時,△CBE的面積最大
【解析】(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長,進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點(diǎn)的坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°.
(1)連接AD,根據(jù) 易證△ACD≌△ ;
(2)如圖2,若E是AC上一點(diǎn),F是AB延長線上一點(diǎn),且CE=BF,求證:DE=DF;
(3)如圖3,在(2)的條件下,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關(guān)系并證明所歸納結(jié)論;
(4)若題中條件“∠CAB=60°且∠CDB=120°”改為“∠CAB=α,∠CDB=180°﹣α”,G在AB上,∠EDG滿足什么條件時,(3)中結(jié)論仍然成立?(只寫結(jié)果不要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.
(1)求證:BD=CE;
(2)設(shè)BD與CE相交于點(diǎn)O,點(diǎn)M,N分別為線段BO和CO的中點(diǎn),當(dāng)△ABC的重心到頂點(diǎn)A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB.點(diǎn)C 在拋物線上,直線AC與y軸交于點(diǎn)D.
(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長交AB于點(diǎn)N,若M為PQ的中點(diǎn).
①求證:△APM∽△AON;
②設(shè)點(diǎn)M的橫坐標(biāo)為m , 求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)寫出C,D兩點(diǎn)的坐標(biāo)(用含a的式子表示);
(2)設(shè)S△BCD:S△ABD=k,求k的值;
(3)當(dāng)△BCD是直角三角形時,求對應(yīng)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)D是y軸上的一點(diǎn),且以B,C,D為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)D的坐標(biāo);
(3)如圖2,CE∥x軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動到何處時,四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo)及最大面積;
(4)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M(4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)P,Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①3-2=(-1)2;
②5-2=(-)2;
③7-2=(-)2;…
(1)請你根據(jù)以上規(guī)律,寫出第6個等式 .
(2)第n個等式可以表示為 ,并請你證明你得到的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,E為AC的中點(diǎn),
(1)請過E作線段EF,且使EF∥AB,EF與BD相交于F;
(2)請回答:EF與CD平行嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com