【題目】如圖,DEAB的垂直平分線.

(1)已知AC=5cm,△ADC的周長為17cm,則BC的長__________

(2)若AD平分∠BAC,AD=AC,則∠C= __________

【答案】12cm 72°

【解析】

1要求BC的大小,只要求出CD+BD,由線段的垂直平分線的性質(zhì)知BD=AD,結(jié)合三角形的周長可得答案;

2)設(shè)∠BAD=x由垂直平分線的性質(zhì)得到AD=BD,由等邊對等角得到∠B=∠BAD=x由三角形外角的性質(zhì)得到∠ADC=∠B+∠BAD= 2x由等腰三角形的性質(zhì)得到∠C=∠ADC=2x由角平分線的性質(zhì)得到∠CAD=∠BAD=x.在△ADC中,由三角形內(nèi)角和定理列方程得到x的值,即可得到結(jié)論

1DE是邊AB的垂直平分線AD=BD,∴△ADC的周長=AD+DC+AC=BD+DC+AC=BC+AC=17cm

又∵AC=5cm,BC=12cm

2)設(shè)∠BAD=x

DE是邊AB的垂直平分線,AD=BD,∴∠B=∠BAD=x,∴∠ADC=∠B+∠BAD=x+x=2x

AD=AC,∴∠C=∠ADC=2x

AD平分∠BAC,∴∠CAD=∠BAD=x.在△ADC中,x+2x+2x=180°,解得:x=36°,∴∠C=2x=72°.

故答案為:12cm,72°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為y= ,10:00之后來的游客較少可忽略不計.

(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進(jìn)入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面積是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cmBC=8cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.

①若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使BPDCQP全等?

(2)若點(diǎn)Q以②中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時出發(fā),都逆時針沿ABC三邊運(yùn)動,求經(jīng)過多長時間點(diǎn)P與點(diǎn)Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)6÷(﹣3)+ ﹣8×22;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
在上述數(shù)字寶塔中,從上往下數(shù),2016在第層.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是 的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2 時,則陰影部分的面積為( )

A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

同步練習(xí)冊答案