【題目】Word文本中的圖形,在圖形格式中大小菜單下顯示有圖形的絕對(duì)高度和絕對(duì)寬度,同一個(gè)圖形隨其放置方向的變化,所顯示的絕對(duì)高度和絕對(duì)寬度也隨之變化.如圖①、②、③是同一個(gè)三角形以三條不同的邊水平放置時(shí),它們所顯示的絕對(duì)高度和絕對(duì)寬度如下表,現(xiàn)有△ABC,已知AB=AC,當(dāng)它以底邊BC水平放置時(shí)(如圖④),它所顯示的絕對(duì)高度和絕對(duì)寬度如下表,那么當(dāng)△ABC以腰AB水平放置時(shí)(如圖⑤),它所顯示的絕對(duì)高度和絕對(duì)寬度分別是(

圖形

圖①

圖②

圖③

圖④

圖⑤

絕對(duì)高度

1.50

2.00

1.20

2.40

?

絕對(duì)寬度

2.00

1.50

2.50

3.60


A.3.60和2.40
B.2.56和3.00
C.2.56和2.88
D.2.88和3.00

【答案】D
【解析】解:
圖④,過A點(diǎn)作AD⊥BC于D,
BD=3.60÷2=1.80,
在Rt△ABD中,AB= =3,
圖⑤絕對(duì)寬度為3;
圖⑤絕對(duì)高度為:
2.40×3.60÷2×2÷3
=4.32×2÷3
=2.88.
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì)和勾股定理的概念,需要了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+c與x軸交于A,B兩點(diǎn),它的對(duì)稱軸與x軸交于點(diǎn)N,過頂點(diǎn)M作ME⊥y軸于點(diǎn)E,連結(jié)BE交MN于點(diǎn)F,已知點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求該拋物線的解析式及頂點(diǎn)M的坐標(biāo).
(2)求△EMF與△BNF的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AC與BD交于O點(diǎn),DO:BO=1:2,點(diǎn)E在CB的延長(zhǎng)線上,如果SAOD:SABE=1:3,那么BC:BE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的四個(gè)頂點(diǎn)正好落在四條平行線上,并且從上到下每?jī)蓷l平行線間的距離都是1,如果AB:BC=3:4,那么AB的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某廣場(chǎng)臺(tái)階(結(jié)合輪椅專用坡道)景觀設(shè)計(jì)的模型,以及該設(shè)計(jì)第一層的截面圖,第一層有十級(jí)臺(tái)階,每級(jí)臺(tái)階的高為0.15米,寬為0.4米,輪椅專用坡道AB的頂端有一個(gè)寬2米的水平面BC;《城市道路與建筑物無障礙設(shè)計(jì)規(guī)范》第17條,新建輪椅專用坡道在不同坡度的情況下,坡道高度應(yīng)符合以下表中的規(guī)定:

坡度

1:20

1:16

1:12

最大高度(米)

1.50

1.00

0.75


(1)選擇哪個(gè)坡度建設(shè)輪椅專用坡道AB是符合要求的?說明理由;
(2)求斜坡底部點(diǎn)A與臺(tái)階底部點(diǎn)D的水平距離AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=5,tanA= ,將△ABC沿直線l翻折,恰好使點(diǎn)A與點(diǎn)B重合,直線l分別交邊AB、AC于點(diǎn)D、E;
(1)求△ABC的面積;
(2)求sin∠CBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,AB=AC=5,BC=6,E為BA延長(zhǎng)線上的一點(diǎn),AE= AB,D為BC的中點(diǎn),則DE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+ ,PA= ,則: ①線段PB= , PC=;
②猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為;
(2)如圖②,若點(diǎn)P在AB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖②給出證明過程;
(3)若動(dòng)點(diǎn)P滿足 = ,求 的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一漁船自西向東追趕魚群,在A處測(cè)得某無名小島C在北偏東60°方向上,前進(jìn)2海里到達(dá)B點(diǎn),此時(shí)測(cè)得無名小島C在東北方向上.已知無名小島周圍2.5海里內(nèi)有暗礁,問漁船繼續(xù)追趕魚群有無觸礁危險(xiǎn)?(參考數(shù)據(jù): =1.414, =1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案