【題目】已知∠AOB=120°,OC、OD過點(diǎn)O的射線,射線OM、ON分別平分∠AOC和∠DOB.
(1)如圖①,若OC、OD是∠AOB 的三等分線,求∠MON的度數(shù);
(2)如圖②,若∠COD=50°,∠AOC≠∠DOB,則∠MON= °;
(3)如圖③,在∠AOB內(nèi),若∠COD=α(0°<α<60°),則∠MON= °.
【答案】(1)∠MON =80°;(2)85°;(3)
【解析】試題分析:(1)根據(jù)角平分線的定義得到∠AOC=∠COD=∠DOB=×120°=40°,∠MOC=∠AOC=20°,∠DON=∠DOB=20°,則∠MON=20°+40°+20°=80°;
(2)根據(jù)角平分線的定義得到∠MOC=∠AOC,∠DON=∠DOB,而∠AOC+∠DOB=120°-50°=70°,則∠MOC+∠DON=35°,所以∠MON=50°+35°=85°;
(3)與(2)一樣得到∠AOC+∠DOB=120°-α,∠MOC+∠DON=60°-α,則∠MON=60°- α+α=60°+α.
試題解析:(1)∵OC,OD是∠AOB的三等分線,
∴∠AOC=∠COD=∠DOB=∠AOB=×120°=40°,
∵OM平分∠AOC,ON平分∠DOB,
∴∠MOC=∠AOC=20°, ∠DON=∠DOB=20° ,
∴∠MON=∠MOC+∠COD+∠DON=80°;
(2)∵射線OM、ON分別平分∠ACO和∠DOB,
∴∠MOC=∠AOC,∠DON=∠DOB,
∴∠MOC+∠DON=(∠AOC+∠DOB),
∵∠AOB=120°,∠COD=50°,
∴∠AOC+∠DOB=120°-50°=70°,
∴∠MOC+∠DON=35°,
∴∠MON=50°+35°=85°,
故答案為:85;
(3)∵射線OM、ON分別平分∠AOC和∠DOB,
∴∠MOC=∠AOC,∠DON=∠DOB,
∴∠MOC+∠DON=(∠AOC+∠DOB),
∵∠AOB=120°,∠COD=α,
∴∠AOC+∠DOB=120°-α,
∴∠MOC+∠DON=60°-α,
∴∠MON=60°-α+α=60°+α= ,
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳老師和學(xué)生做一個(gè)猜數(shù)游戲,他讓學(xué)生按照如下步驟進(jìn)行計(jì)算:
①任想一個(gè)兩位數(shù)a,把a乘以2,再加上9,把所得的和再乘以2;
②把a乘以2,再加上30,把所得的和除以2;
③把①所得的結(jié)果減去②所得的結(jié)果,這個(gè)差即為最后的結(jié)果.
陳老師說:只要你告訴我最后的結(jié)果,我就能猜出你最初想的兩位數(shù)a.
學(xué)生周曉曉計(jì)算的結(jié)果是96,陳老師立即猜出周曉曉最初想的兩位數(shù)是31.
請(qǐng)完成
(1)由①可列代數(shù)式 ,由②可列代數(shù)式 ,由③可知最后結(jié)果為 ;(用含a的式子表示)
(2)學(xué)生小明計(jì)算的結(jié)果是120,你能猜出他最初想的兩位數(shù)是多少嗎?
(3)請(qǐng)用自己的語言解釋陳老師猜數(shù)的方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng)式中,能用公式法分解因式的是( )
A. ﹣m2+n2 B. a2﹣2ab﹣b2 C. m2+n2 D. ﹣a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A,B,C在同一條直線上,點(diǎn)M、N分別是AB、AC的中點(diǎn),如果AB=10cm,AC=8cm,那么線段MN的長(zhǎng)度為( )
A. 6cm B. 9cm C. 3cm或6cm D. 1cm或9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=x-1經(jīng)過( )
A. 第一、二、三象限 B. 第一、二、四象限
C. 第一、三、四象限 D. 第二、三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題的過程中,我們常用到 “分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問題的過程,請(qǐng)仔細(xì)閱讀,并解答問題.
【提出問題】三個(gè)有理數(shù)滿足,求的值.
【解決問題】
解:由題意,得三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①都是正數(shù),即時(shí),則;
②當(dāng)中有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),不妨設(shè),則.
綜上所述, 值為3或-1.
【探究】請(qǐng)根據(jù)上面的解題思路解答下面的問題:
(1)三個(gè)有理數(shù)滿足,求的值;
(2)若為三個(gè)不為0的有理數(shù),且,求的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com