如圖,△ABC與△DCE都是正三角形,且B,C,E在同一直線上,AB=DE,則下列說法中正確的是( 。
分析:觀察圖形,然后根據(jù)旋轉、平移和翻折解答.
解答:解:A、△CDE可由△ABC順時針旋轉120°得到;
B、△CDE可由△ABC沿BC方向平移BC長度得到;
C、△CDE可由△ABC沿過點C與BE垂直的直線翻折得到;
所以,A、B、C三選項都有可能.
故選D.
點評:本題考查了幾何變換的類型,等邊三角形的性質,熟練掌握旋轉、平移和翻折的性質并準確識圖是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,△ABC與△ADE是兩個大小不同的等腰直角三角形,B、C、E在同一條直線上,連接CD.
(1)證明:△ABE≌△ACD;
(2)CD與BE是否垂直?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點,則AD:BE的值為( 。
A、
3
:1
B、
2
:1
C、5:3
D、不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC與△ABD都是等邊三角形,點E,F(xiàn)分別在BC,AC上,BE=CF,AE與BF交于點G.
(1)求∠AGB的度數(shù);
(2)連接DG,求證:DG=AG+BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

29、如圖,△ABC與△A′B′C′關于直線MN對稱,△A′B′C′與△A″B″C″關于直線EF對稱.
(1)畫出△ABC和直線EF;
(2)若直線MN和EF相交于點O,直線MN、EF所夾的銳角設為α,猜想∠BOB″與α之間的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案